zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos synchronization between linearly coupled chaotic systems. (English) Zbl 1067.37043
Summary: This paper investigates the chaos synchronization between two linearly coupled chaotic systems. Some sufficient conditions of global asymptotic synchronization are attained from rigorously mathematical theory. Also, a new method for analyzing the stability of the synchronization of solutions is presented. Using this method, some sufficient conditions for the linear stability of the synchronization of chaotic solutions are gained. The influence of coupling coefficients on chaos synchronization is further studied for three typical chaotic systems: the Lorenz system, the Chen system, and the newly found Lü system.

37D45Strange attractors, chaotic dynamics
34C28Complex behavior, chaotic systems (ODE)
Full Text: DOI
[1] Chiu, C.; Lin, W.; Peng, C.: Asymptotic synchronization in lattices of coupled nonlinear Lorenz equations. Int. J. Bifur. chaos 10, 2717-2728 (2000) · Zbl 0983.37018
[2] Wang, C.; Ge, S. S.: Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos, solitons and fractals 12, 1199-1206 (2001) · Zbl 1015.37052
[3] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems. Phys. rev. Lett. 64, 821-824 (1990) · Zbl 0938.37019
[4] Pecora, L. M.; Carroll, T. L.: Driving systems with chaotic signals. Phys. rev. A 44, 2374-2383 (1991)
[5] Chua, L. O.; Itah, M.; Kosarev, L.; Eckert, K.: Chaos synchronization in Chua’s circuits. J. cricuits syst. Comput. 3, 93-108 (1993)
[6] Hu, G.; Xiao, J.; Zheng, Z.: Chaos control. (2000)
[7] Agiza, H. N.; Yassen, M. T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control. Phys. lett. A 278, 191-197 (2001) · Zbl 0972.37019
[8] Richter, H.: Controlling the Lorenz system: combining global and local schemes. Chaos, solitons and fractals 12, 2375-2380 (2001) · Zbl 1073.93537
[9] Brown, R.; Kocarev, L.: A unifying definition of synchronization for dynamical systems. Chaos 10, 344-349 (2000) · Zbl 0973.34041
[10] Chen, G.; Dong, X.: From chaos to order: methodologies, perspectives and applications. (1998) · Zbl 0908.93005
[11] Chen, G.; Ueta, T.: Yet another chaotic attractor. Int. J. Bifur. chaos 9, 1465-1466 (1999) · Zbl 0962.37013
[12] Lorenz, E. N.: Deterministic non-periodic flows. J. atmos. Sci. 20, 130-141 (1963)
[13] Lü, J.; Lu, J.; Chen, S.: Chaotic time series analysis and its application. (2002)
[14] Lü J, Chen G, Zhang S. A new chaotic attractor coined. Int J Bifur Chaos, 2002, 12, to appear
[15] Lü J, Chen G, Zhang S. Dynamical analysis of a new chaotic attractor. Int J Bifur Chaos, 2002, 12, to appear
[16] Lü J, Chen G, Zhang S. Controlling in between the Lorenz and the Chen systems. Int J Bifur Chaos, 2002, 12, to appear
[17] Lü J, Zhou T, Chen G, Zhang S. The compound structure of Chen’s attractor. Int J Bifur Chaos, 2002, 12, to appear · Zbl 1044.37022
[18] Lu J, Xie J, Lü J, Chen S. Control chaos in transition system using sampled-data feedback. Appl Math Mech, 2002, to appear
[19] Gao B. A new chaotic attractor -- Lü chaotic attractor. Control Theory Appl, 2002, to appear
[20] Stewart, I.: The Lorenz attractor exists. Nature 406, 948-949 (2000)
[21] Ueta, T.; Chen, G.: Bifurcation analysis of Chen’s attractor. Int. J. Bifur. chaos 10, 1917-1931 (2000) · Zbl 1090.37531
[22] Ueta T, Chen G. Bifurcation and chaos in Chen’s equation. In: Proc. of IEEE International Symposium on Circuits and Systems; Geneva, Switzerland, May 29--31, 2000, vol. V. p. 505--8 · Zbl 1090.37531
[23] Vanĕc\breve{}ek, A.; C\breve{}elikovský, S.: Control systems: from linear analysis to synthesis of chaos. (1996)
[24] Wang, X.; Chen, G.: Chaotification via arbitrarily small feedback controls: theory, method, and applications. Int. J. Bifur. chaos 10, 549-570 (2000) · Zbl 1090.37532
[25] Zhong GQ, Tang KS. Circuitry implementaion and synchronization of Chen’s attractor. Int J Bifur Chaos, 2002, 12, to appear
[26] Dialecii, J. L.; Krein, M. G.: Stability of differential equations in Banach space. Translation of math monographs 43 (1974)
[27] Leonov, G.; Bunin, A.; Koksch, N.: Attractor localization of the Lorenz system. Zamm 67, 649-656 (1987) · Zbl 0653.34040