Subharmonic solutions with prescribed minimal period of a discrete forced pendulum equation. (English) Zbl 1067.39022

Using variational methods the authors obtain sufficient conditions on the existence of sub-harmonic solutions with prescribed minimal period \(pT\) for the second order difference equation \[ x(n+1)-2x(n)+x(n-1)+A \sin(x(n))=f(n),\quad f(n+T)=f(n). \] An example is given. The idea of the paper is to find variational functionals to transfer the existence of sub-harmonic solutions into the existence of critical points of the corresponding functional.
This reviewer likes to add that the matrix \(B\) on page 579 in the paper is a circulant matrix some of its properties are well known [S. Barnett, Matrices: Methods and applications, Oxford University Press (1990; Zbl 0706.15001)].


39A11 Stability of difference equations (MSC2000)
39A12 Discrete version of topics in analysis
70J35 Forced motions in linear vibration theory


Zbl 0706.15001
Full Text: DOI


[1] Agarwal, R.P.,and Popenda, J.(1995).Periodic solution of first order linear difference equations.Math.Comput.Model. 22 (1),11-19. · Zbl 0871.39002 · doi:10.1016/0895-7177(95)00096-K
[2] Ahlbrandt, C.D.,and Peterson, A.C.(1996).Discrete Hamiltonian systems Difference Equations,Continued Fractions,and Riccati Equations,Kluwer Academic Publishers, The Netherlands. · Zbl 0860.39001
[3] Butler, G.J.(1980).Integral average and the oscillation of second order ordinary differential equations.SIAM J.Math.Anal. 11,190-200. · Zbl 0424.34033
[4] Capozzi, A., Fortunato, D.,and Salatore, A.(1987).Periodic solution of Langrangian sys-tems with bounded potential.J.Math.Anal.Appl. 124,482-494. · Zbl 0664.34053 · doi:10.1016/0022-247X(87)90009-6
[5] Capozzi, A.,and Salatore, A.(1982).Periodic solutions for nonlinear problem with strong resonance at in nity.Comm.Math.Uiv.Carolinae 23,415-425. · Zbl 0507.34035
[6] Chang, K.C.(1980).Critical Point Theory and its Applications,Science and Technical Press,Shanghai, China.
[7] Chen, S.(1994).Disconjugacy,Disfocality,and oscillation of second order difference equations.J.Diff.Eqns 107,383-394. · Zbl 0791.39001
[8] Fonda, A.,and Willem, M.(1989).Subharmonic oscillations of forced pendulum-type equations.J.Diff.Eqns 81,215-220. · Zbl 0708.34028 · doi:10.1016/0022-0396(89)90120-4
[9] Funk, P.(1970).Variationsrechnung und ihre Anwendung in Physic un Technik,Grundleh-ren Math.Wiss.,2nd ed.,Springer, Berlin.
[10] Guo, Z.M.,and Yu, J.S.(2003).Existence of periodic and subharmonic solutions for second-order superlinear difference equations.Sci.China (Ser A) 46,506-515..586 Yu,Long and Guo
[11] Guo, Z.M.,and Yu, J.S.(2003).The existence of periodic and subharmonic solutions for solutions of subquadratic second order difference equations.J.London Math.Soc. 68 (2), 419-430. · Zbl 1046.39005 · doi:10.1112/S0024610703004563
[12] Hale, J.K.(1969).Ordinary Differential Equations,Wiley Interscience, New York. · Zbl 0186.40901
[13] Hale, J.K.,and Mawhin, J.(1974).Coincidence degree and periodic solutions of neutral equations.J.Diff.Eqns 15,295-307. · Zbl 0274.34070 · doi:10.1016/0022-0396(74)90081-3
[14] Hamel, G.(1922).Uber erzwungen Schwingungen bei endlichen Amplitudeden.Math. Ann. 86,1-13.
[15] Hartman, P.(1998).Difference equations:Disconjugancy,principal solutions,Green ’s functions,complete monotonicity.Trans.Am.Math.Soc. 246,1-30.
[16] Kwong, M.K.(1982).On certain comparision theorems for second order linear oscilla-tion.Proc.Am.Math.Soc. 84,539-542. 17. Long, Y.H., Yu, J.S.,and Guo, Z.M. Disconjugacy and C-disfocality of second order self-adjoint difference equation,Comp.Math.Appl.,to appear.
[17] Ma, S.W., Wang, Z.C.,and Yu, J.S.(1998).An abstract existence theorem at resonance and its applications.J.Diff.Eqns 145,274-294. · Zbl 0940.34056 · doi:10.1006/jdeq.1997.3397
[18] Mawhin, J.,and Willem, M.(1989).Critical Point Theory and Hamilitonian Systemss, Springer-Verlag,New York.
[19] Nehari, Z.(1960).On a class of nonlinear second order differential equations.Tran.Am. Math.Soc. 95,101-123. · Zbl 0097.29501
[20] Pankov, A.,and Zadharchenko, N.(2001).On some discrete variational problems.Acta Appl.Math. 65 (1-3),295-303. · Zbl 0993.39011 · doi:10.1023/A:1010655000447
[21] Rabinowitz, P.H.(1986).Minimax Methods in Critical Point Theory with Applications to Differential Equations,CBMS.AMS 65. · Zbl 0609.58002
[22] Wang, Q., Wang, Z.,and Shi, J.(1996).Subharmonic oscillations with prescribed minimal period for a classs Hamiltonian systems.Nonlinear Anal.T.M.A. 28,1273-1282. · Zbl 0872.34022 · doi:10.1016/S0362-546X(97)82874-X
[23] Willem, M.(1987).Perturbations of non degenerate periodic orbits of Hamiltonian systems.Periodic Solutions of Hamiltonian Syst.Relat.Top.261-266.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.