×

Valid asymptotic expansions for the maximum likelihood estimators of the parameter of a stationary, Gaussian, strongly dependent process. (English) Zbl 1067.62021

Summary: We establish the validity of an Edgeworth expansion to the distribution of the maximum likelihood estimator of the parameter of a stationary, Gaussian, strongly dependent process. The result covers ARFIMA-type models, including fractional Gaussian noise. The method of proof consists of three main ingredients:
(i) verification of a suitably modified version of J. Durbin’s [Biometrika 67, 311–333 (1980; Zbl 0436.62020)] general conditions for the validity of the Edgeworth expansion to the joint density of the log-likelihood derivatives; (ii) appeal to a simple result of Ib M. Skovgaard [Int Stat. Rev. 54, 169–186 (1986; Zbl 0615.62018); Scand. J. Stat., Theory Appl. 8, 227–236 (1981; Zbl 0477.62009)] to obtain from this an Edgeworth expansion for the joint distribution of the log-likelihood derivatives; (iii) appeal to and extension of arguments of R. N. Bhattacharya and J. K. Ghosh [Ann. Stat. 6, 434–451 (1978; Zbl 0396.62010)] to accomplish the passage from the result on the log-likelihood derivatives to the result for the maximum likelihood estimators.
We develop and make extensive use of a uniform version of a theorem of R. Dahlhaus [ibid. 17, No. 4, 1749–1766 (1989; Zbl 0703.62091)] on products of Toeplitz matrices; the extension of Dahlhaus’ results is of interest in its own right. A small numerical study of the efficacy of the Edgeworth expansion is presented for the case of fractional Gaussian noise.

MSC:

62E20 Asymptotic distribution theory in statistics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62E17 Approximations to statistical distributions (nonasymptotic)
Full Text: DOI

References:

[1] ANDERSON, T. W. (1984). An Introduction to Multivariate Statistical Analy sis, 2nd ed. Wiley, New York.
[2] BARNDORFF-NIELSEN, O. E. and COX, D. R. (1989). Asy mptotic Techniques for Use in Statistics. Chapman and Hall, London. · Zbl 0672.62024
[3] BARNDORFF-NIELSEN, O. E. and COX, D. R. (1994). Inference and Asy mptotics. Chapman and Hall, London. · Zbl 0826.62004
[4] BARNDORFF-NIELSEN, O. E. and HALL, P. (1988). On the level-error after Bartlett adjustment of the likelihood ratio statistic. Biometrika 75 374-378. JSTOR: · Zbl 0638.62019 · doi:10.1093/biomet/75.2.374
[5] BHATTACHARy A, R. N. and GHOSH, J. K. (1978). On the validity of the formal Edgeworth expansion. Ann. Statist. 6 434-451. · Zbl 0396.62010 · doi:10.1214/aos/1176344134
[6] BHATTACHARy A, R. N. and RANGA RAO, R. (1976). Normal Approximation and Asy mptotic Expansions. Wiley, New York.
[7] BOX, G. E. P. and JENKINS, G. M. (1976). Time Series Analy sis: Forecasting and Control, rev. ed. Holden-Day, San Francisco.
[8] BROCKWELL, P. J. and DAVIS, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York. · Zbl 0709.62080
[9] CHAMBERS, J. M. (1967). On methods of asy mptotic approximation for multivariate distributions. Biometrika 54 367-383. JSTOR: · Zbl 0166.15302 · doi:10.1093/biomet/54.3-4.367
[10] CHIBISOV, D. M. (1973). An asy mptotic expansion for a class of estimators containing maximum likelihood estimators. Theory Probab. Appl. 18 295-303. · Zbl 0295.62028 · doi:10.1137/1118031
[11] DAHLHAUS, R. (1988). Small sample effects in time series analysis: A new asy mptotic theory and a new estimate. Ann. Statist. 16 808-841. · Zbl 0662.62100 · doi:10.1214/aos/1176350838
[12] DAHLHAUS, R. (1989). Efficient parameter estimation for self-similar processes. Ann. Statist. 17 1749-1766. · Zbl 0703.62091 · doi:10.1214/aos/1176347393
[13] DURBIN, J. (1980). Approximations for densities of sufficient estimators. Biometrika 67 311-333. JSTOR: · Zbl 0436.62020 · doi:10.1093/biomet/67.2.311
[14] FOX, R. and TAQQU, M. S. (1986). Large sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 517-532. · Zbl 0606.62096 · doi:10.1214/aos/1176349936
[15] FOX, R. and TAQQU, M. S. (1987). Central limit theorems for quadratic forms in random variables having long-range dependence. Probab. Theory Related Fields 74 213-240. · Zbl 0586.60019 · doi:10.1007/BF00569990
[16] GÖTZE, F. and HIPP, C. (1994). Asy mptotic distribution of statistics in time series. Ann. Statist. 22 2062-2088. · Zbl 0827.62015
[17] GRANGER, C. W. J. and JOy EUX, R. (1980). An introduction to long-memory time series and fractional differencing. J. Time Ser. Anal. 1 15-29. · Zbl 0503.62079 · doi:10.1111/j.1467-9892.1980.tb00297.x
[18] GRENANDER, U. and SZEGÖ, G. (1958). Toeplitz Forms and Their Applications. Univ. California Press, Berkeley. (2nd ed., Chelsea, New York, 1984.) · Zbl 0080.09501
[19] HORN, R. A. and JOHNSON, C. R. (1985). Matrix Analy sis. Cambridge Univ. Press.
[20] HOSKING, J. R. M. (1981). Fractional differencing. Biometrika 68 165-176. JSTOR: · Zbl 0464.62088 · doi:10.1093/biomet/68.1.165
[21] HURST, H. E. (1951). Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civil Engin. 116 770-808.
[22] JAMES, G. S. (1955). Cumulants of a transformed variate. Biometrika 42 529-531. JSTOR: · Zbl 0066.11902 · doi:10.1093/biomet/42.3-4.529
[23] JAMES, G. S. (1958). On moments and cumulants of sy stems of statistics. Sanky\?a 20 1-30. · Zbl 0083.14902
[24] JAMES, G. S. and MAy NE, A. J. (1962). Cumulants of functions of a random variable. Sanky\?a Ser. A 24 47-54. · Zbl 0105.12403
[25] JOHNSON N. L, KOTZ, S. and BALAKRISHNAN, N. (1997). Continuous Univariate Distributions 2, 2nd ed. Wiley, New York.
[26] LAHIRI, S. N. (1993). Refinements in asy mptotic expansions for sums of weakly dependent random vectors. Ann. Probab. 21 791-799. · Zbl 0776.60025 · doi:10.1214/aop/1176989267
[27] LIEBERMAN, O., ROUSSEAU, J. and ZUCKER, D. M. (2000). Small-sample likelihood-based inference in the ARFIMA model. Econometric Theory 16 231-248. JSTOR: · Zbl 0957.62079 · doi:10.1017/S0266466600162048
[28] MANDELBROT, B. B. and VAN NESS, J. W. (1968). Fractional Brownian motions, fractional noise and applications. SIAM Rev. 10 422-437. JSTOR: · Zbl 0179.47801 · doi:10.1137/1010093
[29] PEERS, H. W. and IQBAL, M. (1985). Asy mptotic expansions for confidence limits in the presence of nuisance parameters, with applications. J. Roy. Statist. Soc. Ser. B 47 547-554. JSTOR:
[30] ROBINSON, P. M. (1995). Time series with strong dependence. In Advances in Econometrics. Sixth World Congress (C. A. Sims, ed.) 1 47-95. Cambridge Univ. Press.
[31] ROCKE, D. M. (1989). Bootstrap Bartlett adjustment in seemingly unrelated regression. J. Amer. Statist. Assoc. 84 598-601. JSTOR: · doi:10.2307/2289948
[32] SKOVGAARD, I. M. (1981). Edgeworth expansions of the distributions of maximum likelihood estimators in the general (non i.i.d.) case. Scand. J. Statist. 8 227-236. · Zbl 0477.62009
[33] SKOVGAARD, I. M. (1986). On multivariate Edgeworth expansions. Internat. Statist. Rev. 54 169- 186. JSTOR: · Zbl 0615.62018 · doi:10.2307/1403142
[34] TANIGUCHI, M. (1983). On the second order asy mptotic efficiency of estimators of Gaussian ARMA processes. Ann. Statist. 11 157-169. · Zbl 0509.62086 · doi:10.1214/aos/1176346066
[35] TANIGUCHI, M. (1984). Validity of Edgeworth expansions for statistics of time series. J. Time Ser. Anal. 5 37-51. · Zbl 0554.62077 · doi:10.1111/j.1467-9892.1984.tb00377.x
[36] TANIGUCHI, M. (1986). Third order asy mptotic properties of maximum likelihood estimators for Gaussian ARMA processes. J. Multivariate Anal. 18 1-31. · Zbl 0595.62091 · doi:10.1016/0047-259X(86)90055-2
[37] TANIGUCHI, M. (1988). Asy mptotic expansions of the distributions of some test statistics for Gaussian ARMA processes. J. Multivariate Anal. 27 494-511. · Zbl 0659.62105 · doi:10.1016/0047-259X(88)90144-3
[38] TANIGUCHI, M. (1991). Higher Order Asy mptotic Theory for Time Series Analy sis. Lecture Notes in Statist. 68. Springer, Berlin.
[39] WHITTLE, P. (1953). Estimation and information in stationary time series. Ark. Mat. 2 423-434. · Zbl 0053.41003 · doi:10.1007/BF02590998
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.