×

zbMATH — the first resource for mathematics

Compatible algorithms for coupled flow and transport. (English) Zbl 1067.76565
Summary: The issue of mass conservation in numerical methods for flow coupled to transport has been debated in the literature for the past several years. In this paper, we address the loss of accuracy and/or loss of global conservation which can occur when flow and transport schemes are not compatible. We give a definition of compatible flow and transport schemes, with emphasis on two popular types of transport algorithms, the streamline diffusion method and discontinuous Galerkin methods. We then discuss several different approaches for flow which are compatible with these transport algorithms. Finally, we give some numerical examples which demonstrate the possible effects of incompatibility between schemes.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76R99 Diffusion and convection
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aizinger, V.; Dawson, C.; Cockburn, B.; Castillo, P., Local discontinuous Galerkin methods for contaminant transport, Adv. water resour., 24, 73-87, (2000)
[2] Baumann, C.E.; Oden, J.T., A discontinuous hp finite element method for convection – diffusion problems, Comput. methods appl. mech. engrg., 175, 311-341, (1999) · Zbl 0924.76051
[3] Berger, R.; Howington, S., Discrete fluxes and mass balance in finite elements, J. hydraul. engrg., 128, 87-92, (2002)
[4] Brooks, A.; Hughes, T., Streamline upwind petrov – galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equation, Comput. meth. appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[5] Castillo, P.; Cockburn, B.; Perugia, I.; Schötzau, D., An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. numer. anal., 38, 1676-1706, (2000) · Zbl 0987.65111
[6] Chippada, S.; Dawson, C.N.; Martı́nez, M.L.; Wheeler, M.F., A projection method for constructing a mass conservative velocity field, Comput. meth. appl. mech. engrg., 151, 1-10, (1998) · Zbl 0953.76045
[7] Cockburn, B.; Dawson, C., Some extensions of the local discontinuous Galerkin method for convection – diffusion equations in multidimensions, () · Zbl 0960.65107
[8] Cockburn, B.; Shu, C., The local discontinuous Galerkin finite element method for convection – diffusion systems, SIAM J. numer. anal., 35, 2440-2463, (1998) · Zbl 0927.65118
[9] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection – diffusion systems, SIAM J. numer. anal., 35, 2440-2463, (1998), (electronic) · Zbl 0927.65118
[10] Dawson, C., Conservative, shock-capturing transport methods with nonconservative velocity approximations, Computat. geosci., 3, 205-227, (1999) · Zbl 0964.76061
[11] C.N. Dawson, S. Sun, M.F. Wheeler, Error estimates and performance for incomplete interior penalty Galerkin method (in preparation)
[12] K. Eriksson, C. Johnson, Adaptive streamline diffusion finite element methods for convection – diffusion problems, Technical Report 1990, Department of Mathematics, Chalmers University of Technology, The University of Goteborg, Sweden, 1990, p. 18 · Zbl 0795.65074
[13] Eriksson, K.; Johnson, C., Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems, Math. comp., 60, 167-188, (1993) · Zbl 0795.65074
[14] Houston, P.; Schwab, C.; Suli, E., Discontinuous hp-finite element methods for advection – diffusion – reaction problems, SIAM J. numer. anal., 39, 2133-2163, (2002) · Zbl 1015.65067
[15] Hughes, T.; Nd, G.E.; Mazzei, L.; Larson, M., The continuous Galerkin method is locally conservative, J. computat. phys., 163, 467-488, (2000) · Zbl 0969.65104
[16] Oden, J.; Babuška, I.; Baumann, C., A discontinuous hp finite element method for diffusion problems, J. comput. phys., 146, 491-519, (1998) · Zbl 0926.65109
[17] Oden, J.T.; Babuška, I.; Baumann, C.E., A discontinuous hp finite element method for diffusion problems, J. comput. phys., 146, 491-516, (1998) · Zbl 0926.65109
[18] Raviart, P.A.; Thomas, J.M., A mixed finite element method for second-order elliptic problems, (), 292-315 · Zbl 0362.65089
[19] Rivière, B.; Wheeler, M.; Girault, V., Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. part I, Computat. geosci., 3, 337-360, (1999) · Zbl 0951.65108
[20] Rivière, B.; Wheeler, M.F.; Girault, V., A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. numer. anal., 39, 902-931, (2001) · Zbl 1010.65045
[21] Weiser, A.; Wheeler, M.F., On convergence of block-centered finite differences for elliptic problems, SIAM J. numer. anal., 25, 351-375, (1988) · Zbl 0644.65062
[22] Wheeler, M., An elliptic collocation-finite element method with interior penalties, SIAM J. numer. anal., 15, 152-161, (1978) · Zbl 0384.65058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.