×

Generalized complex geometry and the Poisson sigma model. (English) Zbl 1067.81046

Summary: The supersymmetric Poisson sigma model is studied as a possible worldsheet realization of generalized complex geometry. Generalized complex structures alone do not guarantee non-manifest \(N = (2, 1)\) or \(N = (2, 2)\) supersymmetry, but a certain relation among the different Poisson structures is needed. Moreover, important relations of an additional almost complex structure are found, which have no immediate interpretation in terms of generalized complex structures.

MSC:

81Q60 Supersymmetry and quantum mechanics
81R12 Groups and algebras in quantum theory and relations with integrable systems

References:

[1] DOI: 10.1016/0550-3213(84)90456-5 · doi:10.1016/0550-3213(84)90456-5
[2] DOI: 10.1016/0550-3213(84)90592-3 · doi:10.1016/0550-3213(84)90592-3
[3] DOI: 10.1093/qmath/hag025 · doi:10.1093/qmath/hag025
[4] DOI: 10.1016/j.physletb.2004.03.014 · Zbl 1246.81375 · doi:10.1016/j.physletb.2004.03.014
[5] DOI: 10.1007/s002200000229 · Zbl 1038.53088 · doi:10.1007/s002200000229
[6] DOI: 10.1023/B:MATH.0000027508.00421.bf · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[7] DOI: 10.1016/S0393-0440(02)00027-X · Zbl 1027.70023 · doi:10.1016/S0393-0440(02)00027-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.