[1] |
F.W. Lawvere, S.H. Schanuel, Conceptual Mathematics, Cambridge University Press, Cambridge, 1997. · Zbl 0889.18001 |

[2] |
S. MacLane, Categories for the Working Mathematician, Springer-Verlag, New York, 1971. · Zbl 0705.18001 |

[3] |
S. MacLane, I. Moerdijk, Sheaves in Geometry and Logic, Springer-Verlag, New York, 1992. |

[4] |
J.L. Bell, Toposes and Local Set Theories, Oxford University Press, Oxford, 1988. · Zbl 0649.18004 |

[5] |
V.S. Varadarajan, Geometry of Quantum Mechanics, vol. 1, Van Nostrand, Princeton, NJ, 1968. · Zbl 0155.56802 |

[6] |
Birkhoff, G.; Von Neumann, J.: The logic of quantum mechanics. Ann. math. 37, 823 (1936) · Zbl 0015.14603 |

[7] |
Kochen, S.; Specker, E.: The problem of hidden variables in quantum mechanics. J. math. Mech. 17, 59 (1967) · Zbl 0156.23302 |

[8] |
Butterfield, J.; Isham, C. J.: A topos perspective on the Kochen--Specker theorem. I. quantum states as generalized valuations. Int. J. Theor. phys. 37, 2669 (1998) · Zbl 0979.81018 |

[9] |
Butterfield, J.; Isham, C. J.: A topos perspective on the Kochen--Specker theorem. II. conceptual aspects and classical analogues. Int. J. Theor. phys. 38, 827 (1999) · Zbl 1007.81009 |

[10] |
Rawling, J. P.; Selesnick, S. A.: Orthologic and quantum logic. Models and computational elements. J. assoc. Comput. Mach 47, 721 (2000) · Zbl 1327.68103 |

[11] |
I. Raptis, Presheaves, sheaves, and their topoi in quantum gravity and quantum logic. gr-qc/0110064. |

[12] |
Butterfield, J.; Isham, C. J.: Some possible roles for topos theory in quantum theory and quantum gravity. Found. phys. 30, 1707 (2000) |

[13] |
M. Artin, A. Grothendieck, J.L. Verdier, Theorie de topos et cohomologie etale des schemas, Springer LNM 269 and 270, Springer-Verlag, Berlin, 1972. · Zbl 0234.00007 |

[14] |
E. Zafiris, Topos theoretical reference frames on the category of quantum observables. quant-ph/0202057. · Zbl 1113.81011 |

[15] |
J.L. Bell, Boolean-valued Models and Independence Proofs in Set Theory, Oxford University Press, Oxford, 1985. · Zbl 0585.03021 |

[16] |
F.W. Lawvere, Continuously variable sets: algebraic Geometry=Geometric logic, in: Proceedings of the Logic Colloquium in Bristol, North-Holland, Amsterdam, 1975. · Zbl 0364.18002 |

[17] |
G. Takeuti, Two Applications of Logic to Mathematics, vol. 13, Kano Memorial Lectures 3, Mathematical Society of Japan, 1978. · Zbl 0393.03027 |

[18] |
Davis, M.: A relativity principle in quantum mechanics. Int. J. Theor. phys. 16, 867 (1977) |

[19] |
A. Mallios, Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry, vols. 1--2, Kluwer Academic Publishers, Dordrecht, 1998. · Zbl 0904.18001 |

[20] |
A. Mallios, Remarks on Singularities, gr-qc/0202028. |