zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fourth-order problems with nonlinear boundary conditions. (English) Zbl 1068.34013
The authors consider monotone-type and nonmonotone boundary conditions for fourth-order ordinary differential equations. In each of the two types of problems an existence result is established. The proofs (especially in monotone case) are technically complicated.

34B15Nonlinear boundary value problems for ODE
Full Text: DOI
[1] Agarwal, R. P.; Meehan, M.; O’regan, D.: Fixed point theory and applications. (2001) · Zbl 0960.54027
[2] Bai, Z.: The method of lower and upper solutions for a bending of an elastic beam equation. J. math. Anal. appl. 248, 195-202 (2000) · Zbl 1016.34010
[3] Cabada, A.: The method of lower and upper solutions for second, third, fourth and higher order boundary value problems. J. math. Anal. appl. 185, 302-320 (1994) · Zbl 0807.34023
[4] Cabada, A.; Pouso, R. L.: Existence results for the problem $(\psi (u^{\prime}))^{\prime}=$f(t,u,$u^{\prime}$) with nonlinear boundary conditions. Nonlinear anal. 35, 221-231 (1999) · Zbl 0920.34029
[5] Drávek, P.; Holubová, G.; Matas, A.; Nec&breve, P.; Esal: Nonlinear models of suspension bridgesdiscussion of the results. Appl. math. 6, 497-514 (2003)
[6] Ehme, J.; Eloe, P. W.; Henderson, J.: Existence of solutions 2nd order fully nonlinear generalized Sturm -- Liouville boundary value problems. Math. inequal. Appl. 4, 247-255 (2001) · Zbl 0994.34007
[7] Ehme, J.; Eloe, P. W.; Henderson, J.: Upper and lower solution methods for fully nonlinear boundary value problems. J. differential equations 180, 51-64 (2002) · Zbl 1019.34015
[8] Erbe, L. H.: Nonlinear boundary value problems for second order differential equations. J. differential equations 7, 459-472 (1970) · Zbl 0284.34017
[9] Fabry, Ch.; Habets, P.: Upper and lower solutions for second-order boundary value problems with nonlinear boundary conditions. Nonlinear anal. 10, 985-1007 (1986) · Zbl 0612.34015
[10] Franco, D.; Nieto, J. J.; O’regan, D.: Anti-periodic boundary value problem for nonlinear first order ordinary differential equations. Math. inequal. Appl. 6, 477-485 (2003) · Zbl 1097.34015
[11] Franco, D.; O’regan, D.: A new upper and lower solutions approach for second order problems with nonlinear boundary conditions. Arch. inequal. Appl. 1, 413-420 (2003)
[12] Hartman, P.: Ordinary differential equations. (1964) · Zbl 0125.32102
[13] G. Infante, Positive solutions of differential equations with nonlinear boundary conditions, Discrete Contin. Dynamic Systems (special volume) (2003) 432 -- 438. · Zbl 1064.34014
[14] Kiguradze, I. T.; Puz&breve, B.; A: Some boundary-value problems for a system of ordinary differential equations. Differential equations 12, 1493-1500 (1977) · Zbl 0374.34013
[15] Ma, R. Y.; Zhang, J. H.; Fu, S. M.: The method of lower and upper solutions for fourth-order two-point boundary value problems. J. math. Anal. appl. 215, 415-422 (1997) · Zbl 0892.34009
[16] Mawhin, J.; Schmitt, K.: Upper and lower solutions and semilinear second order elliptic equations with nonlinear boundary conditions. Proc. roy. Soc. Edinburgh sect. A 97, 199-207 (1984) · Zbl 0573.35029
[17] Peletier, M. A.: Generalized monotonicity from global minimization in fourth-order ordinary differential equations. Nonlinearity 14, 1221-1238 (2001) · Zbl 1001.37053
[18] Rachunková, I.; Tomeček, J.: On nonlinear boundary value problem for systems of differential equations with impulses. Acta univ. Palack. olomuc. Fac. rerum natur. Math. 41, 119-129 (2002)
[19] Wong, P. J. Y.; Agarwal, R. P.: Eigenvalues of lidstone boundary value problems. Appl. math. Comput. 104, 15-31 (1999) · Zbl 0933.65089