zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Cauchy problem for fractional diffusion equations. (English) Zbl 1068.35037
Equations of the form $$(D^{(\alpha)}_tu)(t,x)-B u(t,x)=f(t,x),\quad t\in[0,\tau], \quad 0<\alpha<1,\ x\in\Bbb R^n$$ where $$(D^{(\alpha)}_tu)(t,x)= \frac1{\Gamma(1-2)}\left[\frac\partial{\partial t}\int^t_0(t-\zeta)^{-\alpha}u(\zeta,x)\,d\zeta-t^{-\alpha}u(0,x)\right]$$ $$B= \sum^n_{k,j=1} a_{ij}(x)\frac{\partial^2}{\partial x_i\partial x_j}+\sum^n_{j=1}b_j(x)\frac{\partial}{\partial x_j}+c(x)$$ are considered here. The fundamental solution is studied via a Green matrix. The arguments of the Green matrix are expresssed in terms of Fox’s $H$-functions. Estimates of the elements of the Green matrix are also presented.

35K15Second order parabolic equations, initial value problems
26A33Fractional derivatives and integrals (real functions)
Full Text: DOI
[1] Anh, V. V.; Leonenko, N. N.: Spectral analysis of fractional kinetic equations with random data. J. statist. Phys. 104, 1349-1387 (2001) · Zbl 1034.82044
[2] Baeumer, B.; Meerschaert, M.: Stochastic solutions for fractional Cauchy problems. Fract. calc. Appl. anal. 4, 481-500 (2001) · Zbl 1057.35102
[3] Bazhlekova, E.: The abstract Cauchy problem for fractional evolution equation. Fract. calc. Appl. anal. 1, 255-270 (1998) · Zbl 1041.34043
[4] E. Bazhlekova, Fractional evolution equations in Banach spaces, Dissertation, Technische Universiteit Eindhoven, 2001.
[5] Braaksma, B. L. J.: Asymptotic expansions and analytic continuation for a class of Barnes integrals. Compositio math. 15, 239-341 (1964)
[6] Dzhrbashyan, M. M.; Nersessyan, A. B.: Fractional derivatives and Cauchy problem for differential equations of fractional order. Izv. AN arm. SSR. mat. 3, 3-29 (1968)
[7] Eidelman, S. D.: Parabolic systems. (1969)
[8] El-Sayed, A. M.: Fractional order evolution equations. J. fract. Calc. 7, 89-100 (1995) · Zbl 0839.34069
[9] A. Erdelyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher Transcendental Functions, Vol. III, McGraw-Hill, New York, 1955. · Zbl 0064.06302
[10] Friedman, A.: Partial differential equations of parabolic type. (1964) · Zbl 0144.34903
[11] Gorenflo, R.; Mainardi, F.; Moretti, D.; Paradisi, P.: Time fractional diffusiona discrete random walk approach. Nonlinear dynamics 29, 129-143 (2002) · Zbl 1009.82016
[12] Kochubei, A. N.: A Cauchy problem for evolution equations of fractional order. Differential equations 25, 967-974 (1989) · Zbl 0696.34047
[13] Kochubei, A. N.: Fractional-order diffusion. Differential equations 26, 485-492 (1990) · Zbl 0729.35064
[14] T. Kolsrud, On a class of probabilistic integrodifferential equations, in: S. Albeverio, H. Holden, J.E. Fenstad, T. Lindstrom (Eds.), Ideas and Methods in Mathematics and Physics. Memorial Volume Dedicated to Raphael Høegh-Krohn, Vol. 1, Cambridge University Press, Cambridge, 1992, pp. 168--172.
[15] Kostin, V. A.: Cauchy problem for an abstract differential equation with fractional derivatives. Russian acad. Sci. dokl. Math. 46, 316-319 (1993)
[16] Ladyzhenskaya, O. A.; Solonnikov, V. A.; Uraltseva, N. N.: Linear and quasilinear equations of parabolic type. (1968)
[17] Meerschaert, M. M.; Benson, D. A.; Scheffler, H. P.; Baeumer, B.: Stochastic solutions of space-time fractional diffusion equations. Phys. rev. E 65, 1103-1106 (2002) · Zbl 1244.60080
[18] Metzler, R.; Klafter, J.: The random walk’s guide to anomalous diffusiona fractional dynamics approach. Phys. rep. 339, 1-77 (2000) · Zbl 0984.82032
[19] Miller, K.; Ross, B.: An introduction to the fractional calculus and fractional differential equations. (1993) · Zbl 0789.26002
[20] A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series, Vol. 3: More Special Functions, Gordon and Breach, New York, 1990. · Zbl 0967.00503
[21] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications. (1993) · Zbl 0818.26003
[22] Schneider, W. R.; Wyss, W.: Fractional diffusion and wave equations. J. math. Phys. 30, 134-144 (1989) · Zbl 0692.45004
[23] Schneider, W. R.: Fractional diffusion. Lecture notes phys. 355, 276-286 (1990)
[24] W.R. Schneider, Grey noise, in: Ideas and Methods in Mathematics and Physics. Memorial Volume Dedicated to Raphael Høegh-Krohn, Vol. 1, Cambridge University Press, Cambridge, 1992, pp. 261--282.
[25] Srivastava, H. M.; Gupta, K. C.; Goyal, S. P.: The H-functions of one and two variables with applications. (1982) · Zbl 0506.33007
[26] Wyss, W.: The fractional diffusion equation. J. math. Phys. 27, 2782-2785 (1986) · Zbl 0632.35031
[27] M. Yor, W. Schneider’s grey noise and fractional Brownian motion, in: Proceedings of the Easter Meeting on Probability, Edinburgh, April 10--14, 1989.