Wazwaz, Abdul-Majid Exact solutions for the ZK-MEW equation by using the tanh and sine-cosine methods. (English) Zbl 1068.35145 Int. J. Comput. Math. 82, No. 6, 699-708 (2005). Summary: The tanh and sine-cosine methods are used to handle the two-dimensional ZK-modified equal-width equation (ZK-MEW) \[ u_t+ 3u^2u_x- \alpha u_{xxt}=0. \] The two methods work well to obtain exact solutions of different physical structures; solitary wave solutions and periodic solutions are also obtained. The framework presented here reveals a number of useful features of the methods applied. Cited in 21 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems Keywords:solitons; periodic solutions; modified equal-width equation; ZK equation; sine-cosine method; tanh method Software:MACSYMA PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Int. J. Comput. Math. 82, No. 6, 699--708 (2005; Zbl 1068.35145) Full Text: DOI References: [1] DOI: 10.1017/CBO9780511623998 [2] DOI: 10.1002/(SICI)1099-0887(199707)13:7<583::AID-CNM90>3.0.CO;2-E · Zbl 0883.76048 [3] DOI: 10.1088/0305-4470/23/21/021 · Zbl 0719.35085 [4] DOI: 10.1016/0165-2125(85)90014-9 [5] DOI: 10.1119/1.17120 · Zbl 1219.35246 [6] DOI: 10.1088/0031-8949/54/6/004 · Zbl 0942.35035 [7] DOI: 10.1017/S0022377899007874 [8] DOI: 10.1017/S0022377800008771 [9] DOI: 10.1016/0010-4655(96)00104-X · Zbl 0948.76595 [10] DOI: 10.1016/S0378-4754(02)00175-1 · Zbl 1013.35072 [11] DOI: 10.1080/00207160412331296706 · Zbl 1064.65119 [12] DOI: 10.1016/S0096-3003(03)00745-8 · Zbl 1054.65106 [13] DOI: 10.1103/PhysRevLett.70.564 · Zbl 0952.35502 [14] Wazwaz A. M., Partial Differential Equations: Methods and Applications (2002) · Zbl 1079.35001 [15] DOI: 10.1016/S0960-0779(00)00249-6 · Zbl 1028.35131 [16] DOI: 10.1016/S0096-3003(01)00234-X · Zbl 1027.35118 [17] DOI: 10.1016/S0378-4754(01)00291-9 · Zbl 0999.65109 [18] DOI: 10.1016/S0960-0779(01)00109-6 · Zbl 0997.35083 [19] DOI: 10.1016/S0096-3003(02)00120-0 · Zbl 1029.35200 [20] DOI: 10.1016/S0096-3003(00)00065-5 · Zbl 1024.65098 [21] DOI: 10.1016/S0378-4754(02)00255-0 · Zbl 1021.35092 [22] DOI: 10.1103/PhysRevLett.15.240 · Zbl 1201.35174 [23] Kadomtsev B. B., Soviet Physics JETP 39 pp 285– (1974) [24] DOI: 10.1016/S0370-1573(99)00106-4 [25] DOI: 10.1016/S0096-3003(02)00610-0 · Zbl 1037.35070 [26] DOI: 10.1016/S0167-2789(98)00113-4 · Zbl 0952.76008 [27] DOI: 10.1007/s12043-001-0002-3 [28] DOI: 10.1143/JPSJ.34.1289 · Zbl 1334.35299 [29] Zakharov V. E., Soviet Physics 39 pp 285– (1974) [30] DOI: 10.1016/S0010-4655(99)00471-3 · Zbl 0951.65098 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.