zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the existence of positive solutions of fourth-order difference equations. (English) Zbl 1068.39008
Let $T\ge 1$ fixed, $f\in C(\bbfR^+,\bbfR^+)$, $a:\{1,2,\dots, T+1\}\subset\bbfZ\to \bbfR^+$ and $\lim_{x\to 0,x> 0}\,x^{-1} f(x)$ and $\lim_{x\to+\infty}\, x^{-1} f(x)$ be limits that exist. The authors determine eigenvalues $\lambda$ for which there exist positive solutions $u$ of the fourth-order difference equation $$\Delta^4 u(t- 2)- \lambda a(t) f(u(t))= 0,\quad t\in \{2,3,\dots, T+ 2\}\subset\bbfZ$$ satisfying the boundary conditions $$u(0)= \Delta^2 u(0)= u(T+ 2)= \Delta^2 u(T)= 0$$ or $$u(0)= \Delta^2 u(0)= \Delta u(t+ 1)= \Delta^3 u(T- 1)= 0$$ by means of Krasnosel’skij’s fixed point theorem.

39A11Stability of difference equations (MSC2000)
Full Text: DOI
[1] Agarwal, R. P.; Henderson, J.: Positive solutions and nonlinear eigenvalue problems for third-order difference equations. Comp. math. Appl 36, No. 11--12, 347-355 (1998) · Zbl 0933.39003
[2] Henderson, J.: Positive solutions for nonlinear difference equations. Nonlinear stud 4, No. 1, 29-36 (1997) · Zbl 0883.39002
[3] Merdivenci, F.: Two positive solutions of a boundary value problem for difference equations. J. diff. Eqns. appl 1, 263-270 (1995) · Zbl 0854.39001
[4] Agarwal, R. P.; O’regan, D.: A fixed-point approach for nonlinear discrete boundary value problems. Comp. math. Appl 36, No. 10--12, 115-121 (1998) · Zbl 0933.39004
[5] Henderson, J.; Wang, H. Y.: Positive solutions for nonlinear eigenvalue problems. J. math. Anal. appl 208, 252-259 (1997) · Zbl 0876.34023
[6] Zhang, B. G.; Kong, L. J.; Sun, Y. J.; Deng, X. H.: Existence of positive solutions for BVPs of fourth-order difference equations. Appl. math. Comput 131, 583-591 (2002) · Zbl 1025.39006
[7] Ma, R. Y.; Wang, H. Y.: On the existence of positive solutions of fourth-order ordinary differential equations. Appl. anal 59, 225-231 (1995) · Zbl 0841.34019
[8] Graef, J. R.; Yang, B.: On a nonlinear boundary value problem for fourth order equations. Appl. anal 72, 439-448 (1999) · Zbl 1031.34017
[9] Krasnosel’skii, M. A.: Positive solutions of operator equations. (1964)
[10] Deimling, K.: Nonlinear functional analysis. (1985) · Zbl 0559.47040