×

zbMATH — the first resource for mathematics

Classification of simple \(C^*\)-algebras of tracial topological rank zero. (English) Zbl 1068.46032
As part of Elliott’s classification program for simple separable nuclear \(C^*\)-algebras, specifically the very low rank case (real rank zero and stable rank one), the present paper improves results of M. Dardalat (1995), G. A. Elliott and G. Gong (1996), G. Gong (1997), the author himself (2001, 2003) and M. Dardalat and S. Eilers (2002) in that it is no longer needed to assume that the \(C^*\)-algebra \(A\) and \(B\) are direct limits of some (sub)homogeneous algebras or have unique tracial states.
The main classification result is the following: {If \(A\) and \(B\) are two simple separable unital nuclear \(C^*\)-algebras with tracial topological rank zero which satisfy the universal coefficient theorem, and if they have isomorphic Elliott invariants, that is, if \((K_0(A),K_0(A)_+,[1_A],K_1(A))\cong(K_0(B),K_0(B)_+,[1_B],K_1(B))\), then \(A\cong B\).}
Its importance lies in giving an abstract condition for a simple separable nuclear \(C^*\)-algebra to be classified by Elliott invariants that has been used by S. Walters to prove that certain crossed products of irrational rotation algebras by finite groups are \(AF\)-algebras, by N. C. Phillips to prove that simple higher-dimensional noncommutative tori are \(AT\)-algebras, and by A. Kishimoto for the study of one-parameter automorphism groups on \(AF\)-algebras.

MSC:
46L05 General theory of \(C^*\)-algebras
46L35 Classifications of \(C^*\)-algebras
46L80 \(K\)-theory and operator algebras (including cyclic theory)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] B. Blackadar, O. Bratteli, G. A. Elliott, and A. Kumjian, Reduction of real rank in inductive limits of \(C^*\)-algebras , Math. Ann. 292 (1992), 111–126. · Zbl 0738.46027
[2] B. Blackadar and D. Handelman, Dimension functions and traces on \(C^*\)-algebras , J. Funct. Anal. 45 (1982), 297–340. · Zbl 0513.46047
[3] B. Blackadar and E. Kirchberg, Generalized inductive limits of finite-dimensional \(C^*\)-algebras , Math. Ann. 307 (1997), 343–380. · Zbl 0874.46036
[4] –. –. –. –., Inner quasidiagonality and strong NF algebras , Pacific J. Math. 198 (2001), 307–329. · Zbl 1058.46040
[5] M. Dadarlat, Reduction to dimension three of local spectra of real rank zero \(C^*\)-algebras , J. Reine Angew. Math. 460 (1995), 189–212. · Zbl 0815.46065
[6] –. –. –. –., “Residually finite-dimensional \(C^*\)-algebras” in Operator Algebras and Operator Theory (Shanghai, 1997) , Contemp. Math. 228 , Amer. Math. Soc., Providence, 1998, 45–50. · Zbl 0929.46045
[7] M. Dadarlat and S. Eilers, On the classification of nuclear \(C^*\)-algebras , Proc. London Math. Soc. 85 (2002), 168–210. · Zbl 1031.46070
[8] M. Dadarlat and G. Gong, A classification result for approximately homogeneous \(C^*\)-algebras of real rank zero , Geom. Funct. Anal. 7 (1997), 646–711. · Zbl 0905.46042
[9] M. Dadarlat and T. A. Loring, Classifying \(C^*\)-algebras via ordered, mod-p \(K\)-theory , Math. Ann. 305 (1996), 601–616. · Zbl 0857.46039
[10] –. –. –. –., A universal multicoefficient theorem for the Kasparov groups , Duke J. Math. 84 (1996), 355–377. · Zbl 0881.46048
[11] E. G. Effros, Dimensions and \(C^*\)-Algebras , CBMS Regional Conf. Ser. in Math. 46 , Amer. Math. Soc., Providence, 1980.
[12] G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras , J. Algebra 38 (1976), 29–44. · Zbl 0323.46063
[13] –. –. –. –., On the classification of \(C^*\)-algebras of real rank zero , J. Reine Angew. Math. 443 (1993), 179–219. · Zbl 0809.46067
[14] –. –. –. –., “The classification problem for amenable \(C^*\)-algebras” in Proceedings of the International Congress of Mathematicians, Vol 2 (Zürich, 1994) , Birkhäuser, Basel, 1995, 922–932. · Zbl 0946.46050
[15] G. A. Elliott and D. E. Evans, The structure of irrational rotation \(C^*\)-algebras , Ann. of Math. (2) 138 (1993), 477–501. JSTOR: · Zbl 0847.46034
[16] G. A. Elliott and G. Gong, On the classification of \(C^*\)-algebras of real rank zero, II , Ann. of Math. (2) 144 (1996), 497–610. JSTOR: · Zbl 0867.46041
[17] G. A. Elliott, G. Gong, and L. Li, On the classification of simple inductive limit \(C^*\)-algebras, II: The isomorphism theorem , preprint, 2001.
[18] G. A. Elliott, G. Gong, H. Lin, and C. Pasnicu, Abelian \(C^*\)-subalgebras of \(C^*\)-algebras of real rank zero and inductive limit \(C^*\)-algebras , Duke Math. J. 85 (1996), 511–554. · Zbl 0869.46030
[19] G. Gong, On the inductive limits of matrix algebras over higher dimensional spaces, I, II , Math. Scand. 80 (1997), 41–55.; 56–100. · Zbl 0901.46053
[20] –. –. –. –., On the classification of simple inductive limit \(C^*\)-algebras, I: The reduction theorem , Doc Math. 7 (2002), 255–461. · Zbl 1024.46018
[21] K. R. Goodearl, Notes on a class of simple \(C^*\)-algebras with real rank zero , Publ. Mat. 36 (1992), 637–654. · Zbl 0812.46052
[22] X. Jiang and H. Su, On a simple unital projectionless \(C^*\)-algebra , Amer. J. Math. 121 (1999), 359–413. · Zbl 0923.46069
[23] E. Kirchberg, The classification of purely infinite \(C^*\)-algebras using Kasparov’s theory , Fields Inst. Comm., in preparation.
[24] A. Kishimoto, Non-commutative shifts and crossed products , J. Funct. Anal. 200 (2003), 281–300. · Zbl 1033.46047
[25] H. Lin, On the classification of \(C^*\)-algebras of real rank zero with zero \(K_ 1\) , J. Operator Theory 35 (1996), 147–178. · Zbl 0849.46043
[26] –. –. –. –., Classification of simple TAF \(C^*\)-algebras , Canad. J. Math. 53 (2001), 161–194. · Zbl 0968.46043
[27] –. –. –. –., The tracial topological rank of \(C^*\)-algebras , Proc. London Math. Soc. 83 (2001), 199–234. · Zbl 1015.46031
[28] –. –. –. –., Tracially AF \(C^*\)-algebras , Trans. Amer. Math. Soc. 353 (2001), 693–722. JSTOR: · Zbl 0964.46044
[29] –. –. –. –., Stable approximate unitary equivalence of homomorphisms , J. Operator Theory 47 (2002), 343–378. · Zbl 1029.46097
[30] –. –. –. –., Classification of simple \(C^*\)-algebras and higher dimensional non-commutative tori , Ann. of Math. (2) 157 (2003), 521–544. JSTOR: · Zbl 1049.46052
[31] –. –. –. –., Simple AH-algebras with real rank zero , Proc. Amer. Math. Soc. 131 (2003), 3813–3819. · Zbl 1040.46039
[32] –. –. –. –., Traces and simple \(C^*\)-algebras with tracial topological zero , J. Reine Angew. Math. 568 (2004), 99–137. · Zbl 1043.46041
[33] H. Lin and H. Su, Classification of direct limits of generalized Toeplitz algebras , Pacific J. Math. 181 (1997), 89–140. · Zbl 0905.46043
[34] Q. Lin and N. C. Phillips, \(C^*\)-algebras of minimal diffeomorphisms , preprint, 2000.
[35] N. C. Phillips, A classification theorem for nuclear purely infinite simple \(C^*\)-algebras , Doc. Math. 5 (2000), 49–114. · Zbl 0943.46037
[36] ——–, Crossed products by finite cyclic group actions with the tracial Rokhlin property ,
[37] S. Popa, On local finite dimensional approximation of \(C^*\)-algebras , Pacific J. Math. 181 (1997), 141–158. · Zbl 0907.46046
[38] M. R\ordam, Classification of inductive limits of even Cuntz algebras , J. Reine Angew. Math. 440 (1993), 175–200. · Zbl 0783.46031
[39] –. –. –. –., Classification of extensions of certain \(C^*\)-algebras by their six term exact sequence in \(K\)-theory , Math. Ann. 308 (1997), 93–117. · Zbl 0874.46039
[40] –. –. –. –., “Classification of nuclear, simple \(C^*\)-algebras” in Entropy in Operator Algegras , Encyclopaedia Math. Sci. 126 , Oper. Alg. Non-commut. Geom. 7 , Springer, Berlin, 2002, 1–145. · Zbl 1016.46037
[41] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized \(K\)-functor , Duke Math. J. 55 (1987), 431–474. · Zbl 0644.46051
[42] C. Schochet, Topological methods for \(C^*\)-algebras, IV: Mod p homology , Pacific J. Math. 114 (1984), 447–468. · Zbl 0491.46062
[43] H. Su, On the classification of \(C^*\)-algebras of real rank zero: Inductive limits of matrix algebras over non-Hausdorff graphs , Mem. Amer. Math. Soc. 114 (1995), no. 547. · Zbl 0849.46040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.