×

Sensitivity analysis for abstract equilibrium problems. (English) Zbl 1068.49005

Summary: We develop the general framework of sensitivity analysis for equilibrium problems in the setting of a normed topological vector space. Our approach does not make any recourse to geometrical properties and the obtained result can be viewed as an extension and generalization of the well-known results (on variational inequalities) in the literature. Even though we have worked under arbitrary constraints \(\mathcal K_{\lambda}\) with Hölder-property – that have been decisive in our treatment – we have obtained, in a similar spirit of A. Domokos [J. Math. Anal. Appl. 230, 382–389 (1999; Zbl 0927.49005)], the best lower bound for the continuity modulus despite of the properties of the boundary of \(\mathcal K_{\lambda}\).

MSC:

49J40 Variational inequalities

Citations:

Zbl 0927.49005
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Student, 63, 123-145 (1994) · Zbl 0888.49007
[2] Chadli, O.; Chbani, Z.; Riahi, H., Equilibrium problems with generalized monotone Bifunctions and Applications to Variational inequalities, J. Optim. Theory Appl., 105, 299-323 (2000) · Zbl 0966.91049
[3] Dafermos, S., Sensitivity analysis in variational inequalities, Math. Oper. Res., 13, 421-434 (1988) · Zbl 0674.49007
[4] Domokos, A., Solution sensitivity of variational inequalities, J. Math. Anal. Appl., 230, 382-389 (1999) · Zbl 0927.49005
[5] Kyparisis, J., Sensitivity analysis framework for variational inequalities, Math. Programming, 38, 203-213 (1987)
[6] Kyparisis, J., Sensitivity analysis in nonlinear complementarity problems, Ann. Oper. Res., 27, 143-174 (1990) · Zbl 0723.90075
[7] Kyparisis, J., Perturbed solutions of variational inequality problems over polyhedral sets, J. Optim. Theory Appl., 57, 295-305 (1988) · Zbl 0621.49004
[8] Moudafi, A.; Noor, M. A., Sensitivity analysis for variational inclusions by Wiener-Hopf equations technique, J. Appl. Math. Stochastic Anal., 12 (1999) · Zbl 0946.49008
[9] Mukherjee, R. N.; Verma, H. L., Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl., 167, 299-304 (1992) · Zbl 0766.49025
[10] Noor, M. A., On a class of variational inequalities, J. Math. Anal. Appl., 128, 135-155 (1987) · Zbl 0631.49004
[11] Noor, M. A., Sensitivity analysis for quasi variational inequalities, J. Optim. Theory Appl., 95, 399-407 (1997) · Zbl 0896.49003
[12] Noor, M. A., Sensitivity analysis framework for mixed variational inequalities, J. Natur. Geom., 15, 119-130 (1999) · Zbl 0928.49011
[13] Noor, M. A., Splitting methods for pseudomonotone mixed variational inequalities, J. Math. Anal. Appl., 246, 174-188 (2000) · Zbl 0966.49011
[14] Noor, M. A.; Noor, K. I., Sensitivity analysis for quasi-variational inclusions, J. Math. Anal. Appl., 236, 290-299 (1999) · Zbl 0949.49007
[15] Qiu, Y.; Magnanti, T. L., Sensitivity analysis for variational inequalities defined on polyhedral sets, Math. Oper. Res., 14, 410-432 (1989) · Zbl 0698.90069
[17] Tobin, R. L., Sensitivity analysis for variational inequalities, J. Optim. Theory Appl., 48, 191-204 (1986) · Zbl 0557.49004
[18] Tobin, R. L.; Friesz, T. L., Sensitivity analysis for equilibrium network flow, Transportation Sci., 22, 242-250 (1988) · Zbl 0665.90031
[19] Walkup, D. W.; Wets, R. J.-B., A Lipschitzian of convex polyhedral, Proc. Amer. Math. Soc., 23, 167-178 (1969) · Zbl 0169.51402
[20] Yen, N. D., Hölder continuity of solutions to a parametric variational inequality, Appl. Math. Optim., 31, 245-255 (1995) · Zbl 0821.49011
[21] Yen, N. D., Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint, Math. Oper. Res., 20, 695-707 (1995) · Zbl 0845.90116
[22] Yen, N. D.; Lee, G. M., Solutions sensitivity of a class of variational inequalities, J. Math. Anal. Appl., 215, 48-55 (1997) · Zbl 0906.49002
[23] Zeidler, E., Nonlinear Functional Analysis and its Applications (1990), Springer-Verlag: Springer-Verlag Berlin · Zbl 0684.47028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.