zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Newton methods for solving two classes of nonsmooth equations. (English) Zbl 1068.65063
The author considers systems of nonsmooth equations which are formed by max-type functions or by smooth compositions of max-type functions. The modification of the Newton method, proposed by the author, is based on the new definition of the differential for the functions $F:\Bbb R^n\rightarrow \Bbb R^n.$ This method can be implemented more easily than previous ones because they do not require an element of the Clarke generalized Jacobian [cf. {\it F. H. Clarke}, Optimization and nonsmooth analysis (1983; Zbl 0582.49001)]. The $Q$-superlinear convergence is proved.
Reviewer: Jan Zítko (Praha)

65H10Systems of nonlinear equations (numerical methods)
Full Text: DOI EuDML
[1] W. Chen, G. Chen and E. Feng: Variational principle with nonlinear complementarity for three dimensional contact problems and its numerical method. Sci. China Ser. A 39 (1996), 528-539. · Zbl 0862.73053
[2] X. Chen: A verification method for solutions of nonsmooth equations. Computing 58 (1997), 281-294. · Zbl 0882.65038 · doi:10.1007/BF02684394
[3] F. H. Clarke: Optimization and Nonsmooth Analysis. John Wiley and Sons, New York, 1983. · Zbl 0582.49001
[4] V. F. Demyanov, G. E. Stavroulakis, L. N. Polyakova, and P. D. Panagiotopoulous: Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economic. Kluwer Academic Publishers, Dordercht, 1996.
[5] F. Meng, Y. Gao and Z. Xia: Second-order directional derivatives for max-type functions. J. Dalian Univ. Tech. 38 (1998), 621-624. · Zbl 0923.90131
[6] M. Mifflin: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15 (1977), 959-972. · Zbl 0376.90081 · doi:10.1137/0315061
[7] J. M. Ortega, W. C. Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970. · Zbl 0241.65046
[8] L. Qi: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18 (1993), 227-244. · Zbl 0776.65037 · doi:10.1287/moor.18.1.227
[9] L. Qi, J. Sun: A nonsmooth version of Newton’s method. Math. Programming 58 (1993), 353-367. · Zbl 0780.90090 · doi:10.1007/BF01581275
[10] D. Sun, J. Han: Newton and quasi-Newton methods for a class of nonsmooth equations and related problems. SIAM J. Optim. 7 (1997), 463-480. · Zbl 0872.90087 · doi:10.1137/S1052623494274970