zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Out of this world supersymmetry breaking. (English) Zbl 1068.81608
Summary: We show that in a general hidden sector model, supersymmetry breaking necessarily generates at one loop a scalar and gaugino mass as a consequence of the super-Weyl anomaly. We study a scenario in which this contribution dominates. We consider the standard model particles to be localized on a $(3+1)$-dimensional subspace or “3-brane” of a higher dimensional space-time, while supersymmetry breaking occurs off the 3-brane, either in the bulk or on another 3-brane. At least one extra dimension is assumed to be compactified roughly one to two orders of magnitude below the four-dimensional Planck scale. This framework is phenomenologically very attractive; it introduces new possibilities for solving the supersymmetric flavor problem, the gaugino mass problem, the supersymmetric CP problem, and the $\mu$-problem. Furthermore, the compactification scale can be consistent with a unification of gauge and gravitational couplings. We demonstrate these claims in a four-dimensional effective theory below the compactification scale that incorporates the relevant features of the underlying higher dimensional theory and the contribution of the super-Weyl anomaly. Naturalness constraints follow not only from symmetries but also from the higher dimensional origins of the theory. We also introduce additional bulk contributions to the MSSM soft masses. This scenario is very predictive: the gaugino masses, squark masses, and A terms are given in terms of MSSM renormalization group functions.

MSC:
81T60Supersymmetric field theories
81R40Symmetry breaking (quantum theory)
81T50Anomalies in field theory
81V22Unified theories of elementary particles
WorldCat.org
Full Text: DOI
References:
[1] Scherk, J.; Schwarz, J. H.: Phys. lett. B. 82, 60 (1979)
[2] Fayet, P.: Nucl. phys. B. 263, 649 (1986)
[3] Kounnas, C.; Rostand, B.: Nucl. phys. B. 341, 641 (1990)
[4] Brandhuber, A.; Sonnenschein, J.; Theisen, S.; Yankielowicz, S.: Brane configurations and 4-D field theory dualities. Nucl. phys. B 502, 125 (1997) · Zbl 0939.81039
[5] Witten, E.: Branes and the dynamics of QCD. Nucl. phys. B 507, 658 (1997) · Zbl 0925.81388
[6] Evans, N.; Schwetz, M.: The field theory of non-supersymmetric brane configurations. Nucl. phys. B 522, 69 (1998) · Zbl 1047.81545
[7] Horava, P.; Witten, E.: Nucl. phys. B. 475, 94 (1996)
[8] Horava, P.: Gluino condensation in strongly coupled heterotic string theory. Phys. rev. D 54, 7561 (1996)
[9] Antoniadis, I.; Quiros, M.: Supersymmetry breaking in M-theory and gaugino condensation. Nucl. phys. B 505, 109 (1997) · Zbl 0925.81257
[10] Antoniadis, I.; Dimopoulos, S.; Dvali, G.: Millimetre-range forces in superstring theories with weakscale compactification. Nucl. phys. B 516, 70 (1998) · Zbl 0947.81546
[11] Mirabelli, E. A.; Peskin, M. E.: Transmission of supersymmetry breaking from a four-dimensional boundary. Phys. rev. D 58, 065002 (1998)
[12] Derendinger, J. P.; Ferrara, S.; Kounnas, C.; Zwirner, F.: Phys. lett. B. 271, 307 (1991)
[13] Cardoso, G. L.; Ovrut, B.: Nucl. phys. B. 392, 315 (1993)
[14] Kaplunovsky, V.; Louis, J.: Nucl. phys. B. 422, 57 (1994)
[15] Nilles, H. P.; Olechowski, M.; Yanaguchi, M.: Supersymmetry breaking and soft terms in M-theory. Phys. lett. B 415, 24 (1997)
[16] Lalak, Z.; Thomas, S.: Gaugino condensation, moduli potential and supersymmetry breaking in M-theory models. Nucl. phys. B 515, 55 (1998) · Zbl 0947.81545
[17] Dudas, E.: Phys. lett. B. 416, 309 (1998)
[18] A. Lukas, B.A. Ovrut and D. Waldram, On the four-dimensional effective action of strongly coupled heterotic string theory, hep-th/9710208.
[19] K. Choi, H.B. Kim and C. Munoz, Four-dimensional effective supergravity and soft terms in M-theory, hep-th/9711158.
[20] Lukas, A.; Ovrut, B. A.; Waldram, D.: Gaugino condensation in M-theory on S2/Z2. Phys. rev. D 57, 7529 (1998)
[21] H.P. Nilles, M. Olechowski and M. Yamaguchi, Supersymmetry breakdown at a hidden wall, hep-th/9801030. · Zbl 0961.81083
[22] A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The universe as a domain wall, hep-th/9803235.
[23] J. Ellis, Z. Lalak, S. Pokorsky and W. Pokorski, Five dimensional aspects of M-theory dynamics and supersymmetry breaking, hep-th/9805377. · Zbl 0942.81050
[24] A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, Heterotic M-theory in five dimensions, hep-th/9806051. · Zbl 0958.81117
[25] Z. Kakushadze, A three family SU(4) {$\times$} SU(2) {$\times$} SU(2) Type I vacuum, hep-th/9806044.
[26] J. Lykken, E. Poppitz and S.P. Trivedi, Branes with GUTS and supersymmetry breaking, hep-th/9806080. · Zbl 0958.81108
[27] Antoniadis, I.; Munoz, C.; Quiros, M.: Nucl. phys. B. 397, 515 (1993)
[28] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, hep-ph/9803315.
[29] K.R. Dienes, E. Dudas and T. Ghergetta, Extra space-time dimensions and unification, hep-ph/9803466.
[30] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a fermi and superstrings at a TeV, hep-ph/9804398.
[31] G. Shiu and S.-H.H. Tye, TeV scale superstring and extra dimensions, hep-th/9805157.
[32] R. Sundrum, Effective field theory for a three-brane universe, hep-ph/9805471. · Zbl 1060.81622
[33] A. Pomarol and M. Quiros, The standard model from extra dimensions, hep-ph/9806263.
[34] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.: Phys. rev. D. 59, 086004 (1999)
[35] R. Sundrum, Compactification for a three-brane universe, hep-ph/9807348.
[36] Argyres, P. C.; Dimopoulos, S.; March-Russell, J.: Phys. lett. B. 441, 96 (1998)
[37] Z. Kakushadze and S.-H.H. Tye, Brane world, hep-th/9809147. · Zbl 0943.81036
[38] K. Benakli, Phenomenology of low quantum gravity scale models, hep-ph/9809582.
[39] N. Arkani-Hamed, S. Dimopoulos and J. March-Russell, Stabilization of submillimeter dimensions: The new guise of the hierarchy problem, hep-th/9809124. · Zbl 0961.81131
[40] I. Antoniadis, S. Dimopoulos, A. Pomarol and M. Quiros, Soft masses in theories with supersymmetry breaking by TeV compactification, hep-ph/9810410.
[41] N. Arkani-Hamed and S. Dimopoulos, New origins for approximate symmetries from distant breaking in extra dimensions, hep-ph/981153.
[42] G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, hep-ph/9810442.
[43] Farrar, G. R.: Status of light gaugino scenarios. Nucl. phys. B (Proc. Suppl.) 62, 485 (1998)
[44] S. Raby and K. Tobe, The phenomenology of SUSY models with a gluino LSP, hep-ph/9807281.
[45] Gabbiani, F.; Gabrielli, E.; Masiero, A.; Silvestrini, L.: A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model. Nucl. phys. B 477, 321 (1996)
[46] Barbieri, R.; Hall, L.; Strumia, A.: Nucl. phys. B. 445, 219 (1995)
[47] Banks, T.; Kaplan, D. B.; Nelson, A. E.: Cosmological implications of dynamical supersymmetry breaking. Phys. rev. D 49, 779 (1994)
[48] Brignole, A.; Ibanez, L. E.; Munoz, C.: Towards a theory of soft terms for the supersymmetric standard model. Nucl. phys. B 436, 747 (E) (1995)
[49] Giudice, G. F.; Masiero, A.: Phys. lett. B. 206, 480 (1988)
[50] See the review by Y. Grossman, Y. Nir and R. Rattazzi, CP violation beyond the standard model, hep-ph/9701231.
[51] G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, hep-ph/9801271.
[52] L. Randalland and R. Sundrum, in preparation.
[53] Ellis, J.; Lahanas, A. B.; Nanopoulos, D. V.; Quiros, M.; Zwirner, F.: Phys. lett. B. 188, 408 (1987)
[54] Wess, J.; Bagger, J.: Supersymmetry and supergravity. (1992) · Zbl 0516.53060
[55] Gates, S. J.; Grisaru, M. T.; Rocek, M.; Siegel, W.: One thousand and one lessons in supersymmetry. (1983) · Zbl 0986.58001
[56] Bagger, J.; Poppitz, E.; Randall, L.: Destabilizing divergences in supergravity theories at two loops. Nucl. phys. B 455, 59 (1995) · Zbl 0925.83102
[57] Louis, J.; Nir, Y.: Some phenomenological implications of string loop effects. Nucl. phys. B 447, 18 (1995) · Zbl 1009.81539
[58] Ibanez, L.; Lust, D.: Nucl. phys. B. 382, 305 (1992)
[59] Binétruy, P.; Gaillard, M. K.; Wu, Yi-Yen: Nucl. phys. B. 481, 109 (1996)
[60] Konishi, K.: Phys. lett. B. 135, 439 (1984)
[61] M.K. Gaillard, One loop Pauli-Villars regularization of supergravity. (1) Canonical gauge kinetic energy, hep-th/9806227.
[62] Giudice, G. F.; Rattazzi, R.: Extracting supersymmetry breaking effects from wave function renormalization. Nucl. phys. B 511, 25 (1998) · Zbl 1106.81317
[63] N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, hep-ph/9803290.
[64] Choi, K.; Kim, J. E.; Nilles, H. P.: Phys. rev. Lett.. 73, 1758 (1994)
[65] Dine, M.; Nelson, A. E.: Phys. rev. D. 48, 1277 (1993)
[66] Dine, M.; Nelson, A. E.; Nir, Y.; Shifman, Y.: Phys. rev. D. 53, 2658 (1996)
[67] Dvali, G.; Giudice, G. F.; Pomarol, A.: Nucl. phys. B. 478, 31 (1996)
[68] Dimopoulos, S.; Dvali, G.; Rattazzi, R.: Phys. lett. B. 413, 336 (1997)
[69] Rattazzi, R.; Sarid, U.: Large tan beta in gauge-mediated SUSY breaking models. Nucl. phys. B 501, 297 (1997)
[70] Ferreira, P. M.; Jack, I.; Jones, D. R. T.: Phys. lett. B. 387, 80 (1996)
[71] Martin, S. P.; Ramond, P.: Sparticle spectrum constraints. Phys. rev. D 48, 5365 (1993)
[72] Grinstein, B.; Polchinski, J.; Wise, M. B.: Phys. lett. B. 130, 285 (1983)
[73] Haber, H. E.; Kane, G. L.: Phys. rep.. 117, 75 (1985)
[74] Chen, C. H.; Drees, M.; Gunion, J. F.: Phys. rev. Lett.. 76, 2002 (1996)
[75] Casas, J. A.; Espinosa, J. R.; Haber, H. E.: The Higgs mass in the MSSM infrared fixed point scenario. Nucl. phys. B 526, 3 (1998)
[76] Cohen, A. G.; Kaplan, D. B.; Nelson, A. E.: The more minimal supersymmetric standard model. Phys. lett. B 388, 588 (1996)