×

On some possible generalizations of fractional Brownian motion. (English) Zbl 1068.82518

Summary: Fractional Brownian motion (fBm) can be generalized to multifractional Brownian motion (mBm) if the Hurst exponent \(H\) is replaced by a deterministic function \(H(t)\). The two possible generalizations of mBm based on the moving average representation and the harmonizable representation are first shown to be equivalent up to a multiplicative deterministic function of time by S. Cohen (1999) using the Fourier transform method. In this letter, the authors give an alternative verification of such an equivalence based on the direct computation of the covariances of these two Gaussian processes. There also exists another equivalent representation of mBm, which is a variant version of the harmonizable representation. Finally, they consider a generalization based on the Riemann-Liouville fractional integral, and study the large time asymptotic properties of this version of mBm.

MSC:

82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
60K40 Other physical applications of random processes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Cohen, in: M. Dekking et al. (Eds.), Fractals: Theory and Applications in Engineering, Springer, Berlin, 1999, p. 3.; S. Cohen, in: M. Dekking et al. (Eds.), Fractals: Theory and Applications in Engineering, Springer, Berlin, 1999, p. 3.
[2] R.F. Peltier, J. Levy-Vehel, INRIA Preprint No. 2645 (1995).; R.F. Peltier, J. Levy-Vehel, INRIA Preprint No. 2645 (1995).
[3] Benassi, A.; Jaffard, S.; Roux, D., Revista Math. Iberoamericana, 13, 19 (1997) · Zbl 0880.60053
[4] Mandelbrot, B. B.; van Ness, J. W., SIAM Rev., 10, 422 (1968) · Zbl 0179.47801
[5] Yaglom, A. M., Am. Math. Soc. Trans. Ser., 2, 87 (1955)
[6] G. Chan, T.A. Wood, Compstat’98 Preprint, 1998.; G. Chan, T.A. Wood, Compstat’98 Preprint, 1998.
[7] Lim, S. C.; Sithi, V. M., Phys. Lett. A, 206, 311 (1995) · Zbl 1020.60501
[8] Barnes, J. A.; Allan, D. W., Proc. IEEE, 54, 176 (1966)
[9] Benassi, A.; Cohen, S.; Istas, J., Stat. and Prob. Lett., 39, 337 (1998) · Zbl 0931.60022
[10] A. Ayache, J. Levy-Vehel, in: M. Dekking et al. (Ed.), Fractals: Theory and Applications in Engineering, Springer, Berlin, 1999, p. 17.; A. Ayache, J. Levy-Vehel, in: M. Dekking et al. (Ed.), Fractals: Theory and Applications in Engineering, Springer, Berlin, 1999, p. 17. · Zbl 0936.00006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.