Order and chaos in predator to prey ratio-dependent food chain. (English) Zbl 1068.92044

Summary: We investigate the dynamical behavior and chaos of a realistic three species food chain model considering predator to prey ratio-dependence for the interaction together with type II functional response. The model, for biologically reasonable parameter values, exhibits stable, periodic and chaotic dynamics in long-time behavior. Bifurcation diagrams have been obtained, and Lyapunov exponents and dimensions have been computed. The model shows rich dynamics in the positive octant. The dynamical behavior is found to be very sensitive to parameter values and initial data.


92D40 Ecology
34C60 Qualitative investigation and simulation of ordinary differential equation models
37N25 Dynamical systems in biology
Full Text: DOI


[1] Arditi, R.; Ginzburg, L. R., Coupling in predator-prey dynamics: ratio-dependent, J. Theor. Biol., 139, 311-326 (1989)
[2] Leslie, P. H., Some furthers notes on the use of matrices in population mathematics, Biometrica, 35, 213-245 (1948) · Zbl 0034.23303
[3] Arditi, R.; Abillon, J. M.; DaSilva, J. V., A predator-prey model with satiation and intraspecific competition, Ecol. Model., 5, 173-191 (1978)
[4] Arditi, R.; Berryman, A. A., The biological control paradox, Trends Ecol. Evol., 6, 32 (1991)
[5] Berryman, A. A., The origins and evolution of predator-prey theory, Ecology, 73, 1530-1535 (1992)
[6] Gutierrez, A. P., Physiological basis of ratio-dependent predator-prey theory: the metabolic pool model as a paradigm, Ecology, 73, 1552-1563 (1992)
[7] Berryman, A. A., Population theory: an essential ingredient in pest prediction, management, and policy making, Am. Entomol., 37, 138-142 (1991)
[8] Berryman, A. A.; Michalski, J.; Gutierrez, A. P.; Arditi, R., Logistic theory of food web dynamics, Ecology, 76, 336-343 (1995)
[9] May, R. M., Stability and complexity in model ecosystems (1974), Princeton University Press: Princeton University Press Princeton, New Jersey
[10] Berryman, A. A.; Gutierrez, A. P.; Arditi, R., Credible, realistic and useful predator-prey models, Ecology, 76, 1980-1985 (1995)
[11] Akcakaya, H. R.; Arditi, R.; Ginzburg, L. R., Ratio-dependent predation on abstraction that works, Ecology, 76, 995-1004 (1995)
[12] Cosner, C.; De Angelis, D. L.; Ault, J. S.; Olson, D. B., Effects of spatial grouping on the functional response of predators, Theor. Pop. Biol., 56, 65-75 (1999) · Zbl 0928.92031
[13] Hastings, A.; Powell, T., Chaos in three species food chain, Ecology, 72, 896-903 (1991)
[14] Klebanoff, A.; Hastings, A., Chaos in three species food chain, J. Math. Biol., 32, 427-451 (1993) · Zbl 0823.92030
[15] Abrams, P. A.; Roth, J. D., The effects of enrichment of three species food chains with nonlinear functional responses, Ecology, 75, 1118-1130 (1994)
[16] Gragnani, A.; De Feo, O.; Rinaldi, S., Food chain in the chemostat: relationships between mean yield and complex dynamics, Bull. Math. Biol., 60, 703-719 (1998) · Zbl 0934.92033
[17] Upadhyay, R. K.; Rai, V., Crisis-limited chaotic dynamics in ecological system, Chaos, Solitons & Fractals, 12, 205-218 (2001) · Zbl 0977.92033
[18] Rinaldi, S.; Casagrandi, R.; Gragnani, A., Reduced order models for the prediction of the time of occurrence of extreme episodes, Chaos, Solitons & Fractals, 12, 313-320 (2001) · Zbl 0976.92030
[19] Letellier, C.; Aziz-Alaoui, M. A., Analysis of the dynamics of a realistic ecological model, Chaos, Solitons & Fractals, 13, 95-107 (2002) · Zbl 0977.92029
[21] Gakkhar, S.; Naji, R. K., Chaos in three species ratio-dependent food chain, Chaos, Solitons & Fractals, 14, 771-778 (2002) · Zbl 0994.92037
[22] Baker, G. L.; Gollub, J. P., Chaotic dynamic: an introduction (1996), Cambridge University Press: Cambridge University Press USA · Zbl 0887.58035
[23] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica, 16D, 285-317 (1985) · Zbl 0585.58037
[24] Alligood, K. T.; Sauer, J. D.; Yorke, J. A., Chaos: an introduction to dynamical systems (1997), Springer-Verlag: Springer-Verlag New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.