zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A computed torque controller for uncertain robotic manipulator systems: Fuzzy approach. (English) Zbl 1068.93046
Summary: Computed Torque Control (CTC) is an effective motion control strategy for robotic manipulator systems, which can ensure globally asymptotic stability. However, the CTC scheme requires precise dynamical models of robotic manipulators. To handle this impossibility, in this paper, a new approach combing CTC and Fuzzy Control (FC) is developed for trajectory tracking problems of robotic manipulators with structured uncertainty and/or unstructured uncertainty. The fuzzy part with a set of tunable parameters is employed to approximate lumped uncertainty due to parameter variations, unmodeled dynamics and so on in robotic manipulators. Based on the Lyapunov stability theorem, it is shown that the proposed controller can guarantee stability of closed-loop systems and satisfactory tracking performances. The proposed approach indicates that the CTC method is also valid for controlling uncertain robotic manipulators as long as the compensative controller is appropriately designed. Finally, computer simulation results on a two-link elbow planar robotic manipulator are presented to show tracking capability and effectiveness of the proposed scheme.

MSC:
93C85Automated control systems (robots, etc.)
93C42Fuzzy control systems
WorldCat.org
Full Text: DOI
References:
[1] Chan, P. T.; Rad, A. B.; Wang, J.: Indirect adaptive fuzzy sliding model controlpart two: parameter projection with supervisory control. Fuzzy sets and systems 122, 31-43 (2001) · Zbl 0981.93041
[2] Chen, B. S.; Uang, H. J.; Tseng, C. S.: Robust tracking enhancement of robot systems including motor dynamics: a fuzzy-based dynamic game approach. IEEE trans. Fuzzy systems 6, 538-552 (1998)
[3] Hsu, Y. -C.; Chen, G.; Li, H. -X.: A fuzzy adaptive variable structure controller with applications to robot manipulator. IEEE trans. Systems man cybernet. 31, 331-340 (2001)
[4] Hua, C. C.; Guan, X.; Duan, G.: Variable structure adaptive fuzzy control for a class of nonlinear time delay systems. Fuzzy sets and systems 148, 453-468 (2004) · Zbl 1056.93042
[5] Khosla, P. K.; Kanade, T.: Experimental evaluation of nonlinear feedback and feedforward control schemes for manipulator. Int. J. Robot. res. 7, 18-28 (1988)
[6] Kim, Y. T.; Bien, Z. Z.: Robust adaptive control in the presence of external disturbance and approximation error. Fuzzy sets and systems 148, 377-393 (2004) · Zbl 1057.93027
[7] Kim, Y. H.; Lewis, F. L.: Neural network output feedback control of robot manipulators. IEEE trans. Robot. automat 15, 301-309 (1999)
[8] Labiod, S.; Boucherit, M. S.; Guerra, T. M.: Adaptive fuzzy control of a class of MIMO nonlinear systems. Fuzzy sets and systems 15, No. 1, 59-77 (2005) · Zbl 1142.93365
[9] Luh, J. Y. S.: Conventional controller design for industrial robots-a tutorial. IEEE trans. Systems man cybernet. 13, 298-316 (1983) · Zbl 0509.94001
[10] Man, Z.; Yu, X.; Ashraghian, K.: A robust adaptive sliding mode tracking control using an RBF neural network for robotic manipulators. Proc. IEEE int. Conf. neural networks 5, 2403-2408 (1995)
[11] Middleton, R. H.; Goodwin, G. C.: Adaptive computed torque control for rigid link manipulators. System control lett. 10, 9-16 (1988) · Zbl 0636.93051
[12] Miller, W. T.; Glanz, F. H.; Kraft, L. G.: Application of a general learning algorithm to the control of robotic manipulators. Int. J. Robot. res. 6, 84-98 (1987)
[13] Ozaki, T.; Suzuki, T.; Furuhashi, T.; Okuma, S.; Uchikawa, Y.: Trajectory control of robotic manipulator using neural networks. IEEE trans. Ind. electron. 38, 195-202 (1991)
[14] S. Purwar, I.N. Kar, A.N. Jha, Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints, Fuzzy Sets and Systems; in press. http://www.elsevier.com/locate/fss. · Zbl 1068.93045
[15] Sun, F.; Sun, Z.; Feng, G.: An adaptive fuzzy controller based on sliding mode for robot manipulator. IEEE trans. Systems man cybernet. 29, 661-667 (1999)
[16] Sun, F.; Sun, Z.; Woo, P. Y.: Neural network-based adaptive controller design of robotic manipulators with an observer. IEEE trans. Neural networks 12, 54-67 (2001)
[17] Slotine, J. J. E.; Li, W.: Adaptive manipulator controla case study. IEEE trans. Automat. control 33, 995-1003 (1988) · Zbl 0664.93045
[18] Slotine, J. J. E.; Li, W.: Applied nonlinear control. (1990) · Zbl 0753.93036
[19] Slotine, J. J. E.; Sastry, S. S.: Tracking control of nonlinear systems using sliding surface with application to robot manipulator. Int. J. Control 38, 465-492 (1983) · Zbl 0519.93036
[20] Spong, M. W.; Vidyasagar, M.: Robot dynamics and control. (1989)
[21] Tso, S. K.; Xu, Y. S.; Shum, H. Y.: Variable structure model reference adaptive control of robot manipulators. Proc. IEEE int. Conf. robot. Automat. 1, 2148-2153 (1991)
[22] Wang, L. X.: Stable adaptive fuzzy control of nonlinear systems. IEEE trans. Fuzzy systems 1, 146-155 (1993)
[23] Wang, J.; Rad, A. B.; Chan, P. T.: Indirect adaptive fuzzy sliding model control: part one: fuzzy switching. Fuzzy sets and systems 122, 21-30 (2001) · Zbl 0981.93040
[24] Wang, L. X.; Mendel, J. M.: Fuzzy basis function universal approximation, and orthogonal least square learning. IEEE trans. Neural networks 3, 807-814 (1992)
[25] Wijesoma, S. W.; Richards, R. J.: Robust trajectory following of robots using computed torque structure with VSS. Int. J. Control 52, 935-962 (1990) · Zbl 0706.70033
[26] Yi, S. Y.; Chung, M. J.: A robust fuzzy logic controller for robot manipulators with uncertainties. IEEE trans. Systems man cybernet. 27, 706-713 (1997)
[27] Zadeh, L.: Fuzzy sets. Inform. control 8, 338-353 (1965) · Zbl 0139.24606