zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Lag synchronization of hyperchaos with application to secure communications. (English) Zbl 1068.94004
Summary: Hyperchaotic lag synchronization is restated as a nonlinear and lag-in-time observer design issue. This approach leads to a systematic tool which guarantees the lag synchronization of a wide class of chaotic or hyperchaotic systems via a scalar signal. By exploiting this result, we propose a hyperchaos-based cryptosystem scheme that combines the conventional cryptographic methods and the lag synchronization of chaotic circuits. The computer simulation results show that the lag synchronization scheme and the cryptosystem proposed in this paper are both feasible.

94A05Communication theory
37D45Strange attractors, chaotic dynamics
94C05Analytic circuit theory
Full Text: DOI
[1] Carroll, T. L.; Pecora, L. M.: Synchronizing chaotic circuits. IEEE trans. CAS 38, No. 4, 453-456 (1991) · Zbl 1058.37538
[2] Peng, J. H.; Ding, E. J.; Ding, M.; Yang, W.: Synchronizing hyperchaos with a scalar transmitted signal. Phys. rev. Lett. 76, No. 6, 904-907 (1996)
[3] Duan, C. K.; Yang, S. S.: Synchronizing hyperchaos with a scalar signal by parameter it controlling. Phys. lett. A 229, 151-155 (1997) · Zbl 1043.37502
[4] Agiza, H. N.; Yassen, M. T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control. Phys. lett. A 278, 191-197 (2001) · Zbl 0972.37019
[5] Bai, E.; Lonngrn, K. E.: Synchronization and control of chaotic systems. Chaos, solitons & fractals 9, 1571-1575 (1999) · Zbl 0958.93513
[6] Bai, E.; Lonngrn, K. E.: Sequential synchronization of two Lorenz systems using active control. Chaos, solitons & fractals 11, 1041-1044 (2000) · Zbl 0985.37106
[7] Liao, T. -L.; Lin, S. -H.: Adaptive control and synchronization of Lorenz systems. J. franklin inst. 336, 925-937 (1999) · Zbl 1051.93514
[8] Lian, K. -Y.; Liu, P.; Chiang, T. -S.; Chiu, C. -S.: Adaptive synchronization design for chaotic systems via a scalar driving signal. IEEE trans. CAS, part I 49, No. 1, 17-27 (2002)
[9] Yassen, M. T.: Adaptive control and synchronization of a modified Chua’s circuit system. Appl. math. Comput. 135, 113-128 (2003) · Zbl 1038.34041
[10] Boccaletti, S.: The synchronization of chaotic systems. Phys. rep. 366, 1-101 (2002) · Zbl 0995.37022
[11] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.; Abarbanel, H. D. I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. rev. E 51, 980 (1995)
[12] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. rev. Lett. 78, 4193 (1997) · Zbl 0896.60090
[13] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phase synchronization of chaotic oscillators. Phys. rev. Lett. 76, 1804 (1996) · Zbl 0896.60090
[14] Shahverdiev, E. M.: Lag synchronization in time-delayed systems. Phys. lett. A 292, 320-324 (2002) · Zbl 0979.37022
[15] Sivaprakasam, S.; Shahverdiev, E. M.; Spencer, P. S.; Shore, K. A.: Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback. Phys. rev. Lett. 87, 154101 (2001)
[16] Grassi, G.; Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal. IEEE trans. CAS 44, No. 10, 1143-1147 (1997)
[17] Grassi, G.; Mascolo, S.: Synchronizing hyperchaotic systems by observer design. IEEE trans. CAS 46, No. 4, 1135-1138 (1999) · Zbl 1159.94361
[18] Grassi G, Mascolo S. Design of nonlinear observer for hyperchaos synchronization using a scalar signal. In: Proc 1998 IEEE Int Symp on Circuits and Systems, vol. 3, 1998. p. 283--6
[19] Mensour, B.; Longtin, A.: Synchronization of delay-differential equations with application to private communication. Phys. lett. A 244, 59-70 (1998) · Zbl 0935.34062
[20] Yang, T.; Wu, C. W.; Chua, L. O.: Cryptography based on chaotic systems. IEEE trans. CAS, part I 44, No. 5, 469-472 (1997) · Zbl 0884.94021