zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence results for singular three point boundary value problems on time scales. (English) Zbl 1069.34012
Summary: We prove the existence of a positive solution for the three point boundary value problem on time scale $\bbfT$ given by $$y^{\Delta\Delta}+ f(x, y)=0,\ x\in(0,1]\cap\bbfT,\ y(0)=0,\ y(p)=y \bigl(\sigma^2(1)\bigr),$$ where $p \in(0,1)\cup\bbfT$ is fixed and $f(x,y)$ is singular at $y=0$ and possibly at $x=0$, $y=\infty$. We do so by applying a fixed point theorem due to {\it J. A. Gatica, V. Oliker} and {\it P. Waltman} [J. Differ. Equations 79, 62--78 (1989; Zbl 0685.34017)] for mappings that are decreasing with respect to a cone. We also prove the analogous existence results for the related dynamic equations $y^{\Delta\Delta}+f(x,y)=0$, $y^{\Delta\nabla}+f(x,y)=0$, and $y^{\nabla\Delta}+f(x,y)=0$ satisfying similar three point boundary conditions.

34B10Nonlocal and multipoint boundary value problems for ODE
34B16Singular nonlinear boundary value problems for ODE
39A12Discrete version of topics in analysis
Full Text: DOI
[1] Agarwal, R.; Bohner, M.; O’regan, D.; Peterson, A.: Dynamic equations on time scales: a survey. J. comput. Appl. math. 141, 1-26 (2002) · Zbl 1020.39008
[2] Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM rev. 18, 620-709 (1976) · Zbl 0345.47044
[3] Anderson, D. R.: Existence of solutions to higher-order discrete three-point problems. Electron. J. Differential equations 40, 1-7 (2003) · Zbl 1036.39002
[4] Anderson, D. R.: Multiple positive solutions for a three-point boundary value problem. Math. and comput. Modelling 27, 49-57 (1998) · Zbl 0906.34014
[5] Anderson, D. R.: Solutions to second-order three-point problems on time scales. J. differ. Equations appl. 8, 673-688 (2002) · Zbl 1021.34011
[6] Anderson, D. R.: Taylor polynomials for nabla dynamic equations on time scales. Panamer. math. J. 12, 17-27 (2002) · Zbl 1026.34011
[7] Anderson, D.; Avery, R.; Davis, J.; Henderson, J.; Yin, W.: Positive solutions of boundary value problems. Advances in dynamic equations on time scales, 189-249 (2003)
[8] Anderson, D.; Bullock, J.; Erbe, L.; Peterson, A.; Tran, H.: Nabla dynamic equations. Advances in dynamic equations on time scales, 47-83 (2003) · Zbl 1032.39007
[9] Anderson, D. R.; Hoffacker, J.: Green’s function for an even order mixed derivative problem on time scales. Dynam. systems appl. 12, 9-22 (2003) · Zbl 1049.39019
[10] Atici, F.; Eloe, P. W.; Kaymakcalan, B.: The quasilinearization method for boundary value problems on time scales. J. math. Anal. appl. 276, 357-372 (2002) · Zbl 1021.34006
[11] Atici, F.; Guseinov, G.: On Green’s functions and positive solutions for boundary value problems on time scales. J. comput. Appl. math. 141, 75-99 (2002) · Zbl 1007.34025
[12] Baxley, J. V.: Some singular nonlinear boundary value problems. SIAM J. Math. anal. 22, 463-479 (1991) · Zbl 0719.34038
[13] Bohner, M.; Peterson, A.: Advances in dynamic equations on time scales. (2003) · Zbl 1025.34001
[14] Bohner, M.; Peterson, A.: Dynamic equations on time scales: an introduction with applications. (2001) · Zbl 0978.39001
[15] Eloe, P.; Henderson, J.: Singular nonlinear boundary value problems for higher ordinary differential equations. Nonlinear anal. 17, 1-10 (1991) · Zbl 0731.34015
[16] Eloe, P.; Henderson, J.: Singular nonlinear (k,n-k) conjugate boundary value problems. J. differential equations 133, 136-151 (1997) · Zbl 0870.34031
[17] Eloe, P.; Henderson, J.: Singular nonlinear multipoint conjugate boundary value problems. Commun. appl. Anal. 2, 497-511 (1998) · Zbl 0903.34016
[18] Eloe, P. W.; Sheng, Q.; Henderson, J.: Notes on crossed symmetry solutions of the two-point boundary value problems on time scales. J. differ. Equations appl. 9, 29-48 (2003) · Zbl 1038.34013
[19] Erbe, L. H.; Kong, Q.: Boundary value problems for singular second-order functional differential equations. J. comput. Appl. math. 53, 377-388 (1994) · Zbl 0816.34046
[20] Fink, A. M.; Gatica, J. A.; Hernández, G. E.: Approximation of solutions of singular second order boundary value problems. SIAM J. Math. anal. 22, 440-462 (1991) · Zbl 0722.34015
[21] Gatica, J. A.; Oliker, V.; Waltman, P.: Singular nonlinear boundary value problems for second-order ordinary differential equations. J. differential equations 79, 62-78 (1989) · Zbl 0685.34017
[22] Gupta, C. P.: A sharper condition for the solvability of a three-point second order boundary value problem. J. math. Anal. appl. 205, 579-586 (1997) · Zbl 0874.34014
[23] Gupta, C. P.: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation. J. math. Anal. appl. 168, 540-551 (1992) · Zbl 0763.34009
[24] Henderson, J.; Yin, W.: Focal boundary-value problems for singular ordinary differential equations. Stability control theory methods appl. 5, 283-295 (1997) · Zbl 0974.34014
[25] Henderson, J.; Yin, W.: Singular (k,n-k) boundary value problems between conjugate and right focal. Positive solutions of nonlinear problems. J. comput. Appl. math. 88, 57-69 (1998) · Zbl 0901.34026
[26] S. Hilger, Ein Masskettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis, Universität Würzburg, 1988 · Zbl 0695.34001
[27] Krasnosel’skii, M. A.: Positive solutions to operator equations. (1964)
[28] Lomtatidze, A. G.: A singular three-point boundary value problem (in russian). Tbiliss. GoS univ. Inst. prikl. Mat. trudy. 17, 122-134 (1986) · Zbl 0632.34011
[29] Ma, R.: Positive solutions of a nonlinear three-point boundary value problem. Electron. J. Differential equations 34, 1-8 (1998)
[30] P.K. Singh, A second order singular three-point boundary value problem, Appl. Math. Lett., in press · Zbl 1062.34013
[31] Spedding, V.: Taming nature’s numbers. New scientist, 28-31 (July 2003)