zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Phase synchronization of coupled chaotic multiple time scales systems. (English) Zbl 1069.34056
The authors study phase synchronization of two coupled chaotic oscillators. Two oscillators are said to be phase synchronized if one can introduce their phases $\varphi_1(t)$ and $\varphi_2(t)$ and the phases satisfy the locking condition $\vert n \varphi_1(t) - m \varphi_2(t)\vert < \text{ const}$, where $n$ and $m$ are some integer numbers. Using numerical simulations of the Hindmarsh-Rose neuron model and of a model for the brushless dc rotor, the authors conclude that the behavior of Lyapunov exponents can not be used as a criterion for the phase synchronization of coupled systems. The given arguments are purely numerical.

34C15Nonlinear oscillations, coupled oscillators (ODE)
34C28Complex behavior, chaotic systems (ODE)
34D08Characteristic and Lyapunov exponents
Full Text: DOI
[1] Rosenblum, M.; Pikovsky, A.; Kurths, J.: Phys. rev. Lett.. 76, 1804 (1996)
[2] Rosenblum, M.; Pikovsky, A.; Kurths, J.: Phys. rev. Lett.. 78, 4193 (1997)
[3] Shuai, J. -W.; Durand, D.: Phys. lett. A. 264, 289 (1999)
[4] Pikovsky, A.; Rosenblum, M.; Osipov, G.; Kurths, J.: Physica D. 104, 219 (1997)
[5] Hemati, N.: Ind. app. Soc. annual meeting, conf. Rec.. 1, 51 (1993)
[6] Hemati, N.: IEEE circ. Syst.. 41, 40 (1994)
[7] Khalil, H.: Nonlinear systems. (2002) · Zbl 1003.34002
[8] Ge, Z. -M.; Yang, H. -S.; Chen, H. -H.; Chen, H. -K.: Int. J. Eng. sci.. 37, 921 (1999)