zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics of a class of non-autonomous systems of two non-interacting preys with common predator. (English) Zbl 1069.34071
The system $$y_i'= y_i(a_i- c_i y_i- b_i y_3),\quad i= 1,2,$$ $$y_3'= y_3(- a_3+ b_3 y_1+ b_4 y_2),$$ with positive, variable coefficients is investigated with respect to permanence, extinction and global stability. For periodic coefficients also periodic solutions are studied.

34C60Qualitative investigation and simulation of models (ODE)
92D25Population dynamics (general)
34C25Periodic solutions of ODE
34D05Asymptotic stability of ODE
34D23Global stability of ODE
Full Text: DOI
[1] C. Azar, J. Holmberg and K. Lindgren,Stability analysis of harvesting in a predator-preymodel, J. Theort. Biol. 174 (1995), 13--19. · doi:10.1006/jtbi.1995.0076
[2] L. Barbalat,Systemes d’ equations differentielles d’oscillations nonlineaires, Rev. Roumaine Math. Pures. Appl. 4 (1959), 267--270.
[3] E. Beretta, Y. Kuang,Convergence results in a well-known predator prey system, J. Math. Anal. Appl. 204 (1996) 840--853. · Zbl 0876.92021 · doi:10.1006/jmaa.1996.0471
[4] D. K. Bhattachaya and S. Karan,Pest managment of two non-interacting pests in presence of common predator, J. Appl. Math. Computing 13 (2003), 301--322. · Zbl 1047.34033 · doi:10.1007/BF02936094
[5] M. Cavani and M. Lizana,Stable perriodic for a predator-prey model with delay, J. Math. Anal. Appl. 249 (2000), 324--339. · Zbl 0997.92035 · doi:10.1006/jmaa.2000.6802
[6] M. Feng and K. Wang,Global existence of positive periodic solutions of periodic-predator-prey system with infinite delays, J. Math. Anal. Appl. 262 (2001), 1--11. · Zbl 0995.34063 · doi:10.1006/jmaa.2000.7181
[7] R. E. Gaines and J. L. Mawhin,Coincidence degree and nonlinear differential equations, Springer, Berlin, 1977. · Zbl 0339.47031
[8] K. Gopalsamy,Stability and oscillations in delay differential equations of population dynamics, Kluwer Academic, Dordrecht, The Netherlands, 1992. · Zbl 0752.34039
[9] X.-Z. He,Stability and delays in a predator prey system, J. Math. Anal. Appl.198 (1996) 355--370. · Zbl 0873.34062 · doi:10.1006/jmaa.1996.0087
[10] W. Krawcewicz and J. Wu,Theory of degrees with applications to bifurcations and differential equations, John Wily, New York, 1997. · Zbl 0882.58001
[11] Y. Kuang,Delay differential equations with applications in population dynamics, Academic press, New York, 1993. · Zbl 0777.34002
[12] S. Kumar, S. K. Sirvastava and P. Chingakham,Hopf bifurcation and stability analysis in a harvasted one-predator-two-prey model, Appl. Math. Comp. 126 (2002), 107--118. · Zbl 1017.92041 · doi:10.1016/S0096-3003(01)00033-9
[13] Y. Li,Positive periodic solution for neutral delay model, Acta Math. Scinica 39 (1996), 790--795.
[14] Y. Li,Periodic solutions of a periodic neutral delay equations, J. Math. Anal. Appl. 214 (1997), 11--21. · Zbl 0894.34075 · doi:10.1006/jmaa.1997.5576
[15] Y. Li,Periodic solution of a periodic delay predator-prey system, Proc. Amer. Math. Soc. 127 (1999), 1331--1335. · Zbl 0917.34057 · doi:10.1090/S0002-9939-99-05210-7
[16] S. H. Saker,Oscillation and global attractivity in a periodic delay hematopoiesis model, J. Appl. Math. and Computing 13(1--2) (2003), 287--300. · Zbl 1055.34127 · doi:10.1007/BF02936093
[17] S. H. Saker,Oscillation and global attractivity of hematopoiesis model with delay time, Appl. Math. Comp. 136 (2003), no. 2--3, 27--36. · Zbl 1026.34082 · doi:10.1016/S0096-3003(02)00035-8
[18] S. H. Saker and Sheba Agarwal,Oscillation and global attractivity in a nonlinear delay periodic model of respiratory dynamics, Comp. Math. Appl. 44 (2002), no. 5--6, 623--632. · Zbl 1041.34073 · doi:10.1016/S0898-1221(02)00177-3
[19] S. H. Saker and S. Agarwal,Oscillation and global attractivity in a periodic Nicholson’s Blowflies model, Mathl. Comp. Modelling 35 (2002), 719--731. · Zbl 1012.34067 · doi:10.1016/S0895-7177(02)00043-2
[20] S. H. Saker and S. Agarwal,Oscillation and global attractivity of a periodic survival red blood cells model, Journal Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms, in press. · Zbl 1078.34062
[21] S. H. Saker and S. Agarwal,Oscillation and global attractivity in nonlinear delay periodic model of population dynamics, Applicable Analysis 81 (2002), 787--799. · Zbl 1041.34061 · doi:10.1080/0003681021000004429
[22] Y. Takeuchi and N. Adachi,Existence and bifurcation of stable equilibrium in two-prey, one predator communities, Bull. Math. Biol. 45 (1983), 877--900. · Zbl 0524.92025
[23] S. Tang and L. Chen,Global qualitative analysis for a ratio-dependent predator-prey model with delay, J. Math. Anal. Appl. 266 (2002), 401--419. · Zbl 1069.34122 · doi:10.1006/jmaa.2001.7751
[24] W. Wang, G. Mulone, F. Salemi and V. Salone,Permanence, and stability of stage-structured predator-prey model, J. Math. Anal. Appl. 262 (2001), 499--528. · Zbl 0997.34069 · doi:10.1006/jmaa.2001.7543
[25] R. Xu and M. A. J. Chaplain,Persistence and global stability in a delayed Gause-type predator-prey system with dominating instantaneous negative feedbacks, J. Math. Anal. Appl. 256 (2002), 148--162. · Zbl 1013.34074 · doi:10.1006/jmaa.2001.7701
[26] R. K. Upadhyay, S. R. Iyengar and V. Rai,Stability and complexity in ecological systems, Chaos, Solitons and Fractals 11 (2000) 533--542. · Zbl 0943.92033 · doi:10.1016/S0960-0779(98)00112-X
[27] Z. Zhang and Z. Wang,Periodic solutions for a two-species nonautonomous competition Lotka-Volterra pathch system with time delay, J. Math. Anal. Appl. 265 (2002), 38--48. · Zbl 1003.34060 · doi:10.1006/jmaa.2001.7682