zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Simplest equation method to look for exact solutions of nonlinear differential equations. (English) Zbl 1069.35018
Summary: A new method is presented for the search of exact solutions of nonlinear differential equations. Two basic ideas are in the focus of our approach. One of them is to use the general solutions of the simplest nonlinear differential equations. Another idea is to take into consideration all possible singularities of the studied equation. Applications of our approach to search for exact solutions of nonlinear differential equations is discussed in detail. The method is used to investigate the exact solutions of the Kuramoto-Sivashinsky equation and the equation for the description of nonlinear waves in a convective fluid. New exact solitary and periodic waves of these equations are given.

35C05Solutions of PDE in closed form
35Q53KdV-like (Korteweg-de Vries) equations
Full Text: DOI
[1] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. R.: Phys. rev. Lett.. 19, 1095-1097 (1967)
[2] Hirota, R.: Phys. rev. Lett.. 27, 1192-1194 (1971)
[3] Weiss, J.; Tabor, M.; Carnevalle, G.: J. math. Phys.. 24, 522-526 (1983)
[4] Kudryashov, N. A.: J. appl. Math. mech.. 52, 361-365 (1988)
[5] Conte, R.; Musette, M.: J. phys. A.: math. Gen.. 22, 169-177 (1989)
[6] Choudhury, S. R.: Phys. lett. A.. 159, 311-317 (1997)
[7] Kudryashov, N. A.: Phys lett. A.. 155, 269-275 (1991)
[8] Musette, M.; Conte, R.: Physica D. 181, 70-79 (2003)
[9] Lou, S. Y.; Huang, G.; Ruan, H.: J. phys. A.: math. Gen.. 24, 587-590 (1991)
[10] Kudryashov, N. A.; Zargaryan, E. D.: J. phys. A. math gen.. 29, 8067-8077 (1996)
[11] Fan, E. G.: Phys lett. A.. 227, 212-218 (2000)
[12] Elwakil, S. A.; Ellabany, S. K.; Zahran, M. A.: Phys. lett. A.. 299, 179-188 (2002)
[13] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q.: Phys. lett. A.. 289, 69-74 (2001)
[14] Yan, Z. Y.: Chaos, solitons & fractals. 15, No. 3, 575-583 (2003)
[15] Kudryashov, N. A.: Phys lett. A.. 147, 287-291 (1990)
[16] Porubov, A. V.: J. phys. A.: math. Gen.. 26, L707-L800 (1993) · Zbl 0803.35132
[17] Landa, P. S.: Nonlinear oscillations and waves in dynamical syctems. (1996) · Zbl 0873.34003
[18] Kuramoto, Y.; Tsuzuki, T.: Prog. theor. Phys.. 55, 356 (1976)
[19] Sivashinsky, G. I.: Physica D. 4, 227-235 (1982)
[20] Aspe, H.; Depassier, M. C.: Phys. rev. A.. 41, 3125 (1990)
[21] Garazo, A.; Velarde, M. G.: Phys. fluids A. 3, 2295 (1991)
[22] Akhiezer, N. I.: Elements of theory of elliptic functions. (1948)
[23] Conte, R.: The Painlevé property, one century later, CRM series in mathematical physics. (1999)
[24] Hopf, E.: Commun. pure appl. Math.. 3, 201-230 (1950)
[25] Cole, J. D.: Quart. appl. Math.. 9, 225-236 (1951)