×

Well-posedness of the water-waves equations. (English) Zbl 1069.35056

Summary: We prove that the water-waves equations (i.e., the inviscid Euler equations with free surface) are well-posed locally in time in Sobolev spaces for a fluid layer of finite depth, either in dimension \(2\) or \(3\) under a stability condition on the linearized equations. This condition appears naturally as the Lévy condition one has to impose on these nonstricly hyperbolic equations to insure well-posedness; it coincides with the generalized Taylor criterion exhibited in earlier works. Similarly to what happens in infinite depth, we show that this condition always holds for flat bottoms. For uneven bottoms, we prove that it is satisfied provided that a smallness condition on the second fundamental form of the bottom surface evaluated on the initial velocity field is satisfied.
We work here with a formulation of the water-waves equations in terms of the velocity potential at the free surface and of the elevation of the free surface, and in Eulerian variables. This formulation involves a Dirichlet-Neumann operator which we study in detail: sharp tame estimates, symbol, commutators and shape derivatives. This allows us to give a tame estimate on the linearized water-waves equations and to conclude with a Nash-Moser iterative scheme.

MSC:

35Q35 PDEs in connection with fluid mechanics
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35J67 Boundary values of solutions to elliptic equations and elliptic systems
35Q05 Euler-Poisson-Darboux equations
35L80 Degenerate hyperbolic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Serge Alinhac and Patrick Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, Savoirs Actuels. [Current Scholarship], InterEditions, Paris; Éditions du Centre National de la Recherche Scientifique (CNRS), Meudon, 1991 (French). · Zbl 0791.47044
[2] J. BONA, T. COLIN, D. LANNES, Long wave approximations for water-waves, Arch. Ration. Mech. Anal., to appear. · Zbl 1050.76006
[3] J. Thomas Beale, Thomas Y. Hou, and John S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium, Comm. Pure Appl. Math. 46 (1993), no. 9, 1269 – 1301. · Zbl 0796.76041 · doi:10.1002/cpa.3160460903
[4] Garrett Birkhoff, Helmholtz and Taylor instability, Proc. Sympos. Appl. Math., Vol. XIII, American Mathematical Society, Providence, R.I., 1962, pp. 55 – 76.
[5] Gilles Carbou, Penalization method for viscous incompressible flow around a porous thin layer, Nonlinear Anal. Real World Appl. 5 (2004), no. 5, 815 – 855. · Zbl 1125.76068 · doi:10.1016/j.nonrwa.2004.02.003
[6] Michael Christ and Jean-Lin Journé, Polynomial growth estimates for multilinear singular integral operators, Acta Math. 159 (1987), no. 1-2, 51 – 80. · Zbl 0645.42017 · doi:10.1007/BF02392554
[7] R. R. Coifman, G. David, and Y. Meyer, La solution des conjecture de Calderón, Adv. in Math. 48 (1983), no. 2, 144 – 148 (French). · Zbl 0518.42024 · doi:10.1016/0001-8708(83)90084-1
[8] R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur \?² pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361 – 387 (French). · Zbl 0497.42012 · doi:10.2307/2007065
[9] R. R. Coifman and Yves Meyer, Nonlinear harmonic analysis and analytic dependence, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 71 – 78. · doi:10.1090/pspum/043/812284
[10] Walter Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits, Comm. Partial Differential Equations 10 (1985), no. 8, 787 – 1003. · Zbl 0577.76030 · doi:10.1080/03605308508820396
[11] Walter Craig, Nonstrictly hyperbolic nonlinear systems, Math. Ann. 277 (1987), no. 2, 213 – 232. · Zbl 0614.35060 · doi:10.1007/BF01457361
[12] Walter Craig and David P. Nicholls, Traveling gravity water waves in two and three dimensions, Eur. J. Mech. B Fluids 21 (2002), no. 6, 615 – 641. · Zbl 1084.76509 · doi:10.1016/S0997-7546(02)01207-4
[13] Walter Craig, Ulrich Schanz, and Catherine Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), no. 5, 615 – 667 (English, with English and French summaries). · Zbl 0892.76008 · doi:10.1016/S0294-1449(97)80128-X
[14] W. Craig, C. Sulem, and P.-L. Sulem, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity 5 (1992), no. 2, 497 – 522. · Zbl 0742.76012
[15] Marc Dambrine and Michel Pierre, About stability of equilibrium shapes, M2AN Math. Model. Numer. Anal. 34 (2000), no. 4, 811 – 834 (English, with English and French summaries). · Zbl 0966.49023 · doi:10.1051/m2an:2000105
[16] Hermann Flaschka and Gilbert Strang, The correctness of the Cauchy problem, Advances in Math. 6 (1971), 347 – 379 (1971). · Zbl 0213.37304 · doi:10.1016/0001-8708(71)90021-1
[17] P. R. Garabedian and M. Schiffer, Convexity of domain functionals, J. Analyse Math. 2 (1953), 281 – 368. · Zbl 0052.33203 · doi:10.1007/BF02825640
[18] John E. Gilbert and Margaret A. M. Murray, Clifford algebras and Dirac operators in harmonic analysis, Cambridge Studies in Advanced Mathematics, vol. 26, Cambridge University Press, Cambridge, 1991. · Zbl 0733.43001
[19] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. · Zbl 0695.35060
[20] J. HADAMARD, Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées, [B] Mém. Sav. étrang. (2) 33, Nr. 4, 128 S. (1908).
[21] Richard S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65 – 222. · Zbl 0499.58003
[22] Thomas Y. Hou, Zhen-huan Teng, and Pingwen Zhang, Well-posedness of linearized motion for 3-D water waves far from equilibrium, Comm. Partial Differential Equations 21 (1996), no. 9-10, 1551 – 1585. · Zbl 0874.76014 · doi:10.1080/03605309608821238
[23] I. L. Hwang, The \?²-boundedness of pseudodifferential operators, Trans. Amer. Math. Soc. 302 (1987), no. 1, 55 – 76. · Zbl 0651.35089
[24] Tosio Kato and Gustavo Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), no. 7, 891 – 907. · Zbl 0671.35066 · doi:10.1002/cpa.3160410704
[25] D. LANNES, Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators, Preprint Université Bordeaux 1. · Zbl 1099.35191
[26] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). · Zbl 0212.43801
[27] V. I. Nalimov, The Cauchy-Poisson problem, Dinamika Splošn. Sredy Vyp. 18 Dinamika Židkost. so Svobod. Granicami (1974), 104 – 210, 254 (Russian).
[28] David P. Nicholls and Fernando Reitich, A new approach to analyticity of Dirichlet-Neumann operators, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 6, 1411 – 1433. · Zbl 1016.35030 · doi:10.1017/S0308210500001463
[29] L. V. Ovsjannikov, Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification, Applications of methods of functional analysis to problems in mechanics (Joint Sympos., IUTAM/IMU, Marseille, 1975) Springer, Berlin, 1976, pp. 426 – 437. Lecture Notes in Math., 503.
[30] Monique Sablé-Tougeron, Régularité microlocale pour des problèmes aux limites non linéaires, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 1, 39 – 82 (French). · Zbl 0577.35004
[31] Xavier Saint Raymond, A simple Nash-Moser implicit function theorem, Enseign. Math. (2) 35 (1989), no. 3-4, 217 – 226. · Zbl 0702.58011
[32] Guido Schneider and C. Eugene Wayne, The long-wave limit for the water wave problem. I. The case of zero surface tension, Comm. Pure Appl. Math. 53 (2000), no. 12, 1475 – 1535. , https://doi.org/10.1002/1097-0312(200012)53:123.0.CO;2-V Demetrios Christodoulou and Hans Lindblad, On the motion of the free surface of a liquid, Comm. Pure Appl. Math. 53 (2000), no. 12, 1536 – 1602. , https://doi.org/10.1002/1097-0312(200012)53:123.3.CO;2-H
[33] Geoffrey Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I, Proc. Roy. Soc. London. Ser. A. 201 (1950), 192 – 196. · Zbl 0038.12201 · doi:10.1098/rspa.1950.0052
[34] Michael E. Taylor, Partial differential equations. II, Applied Mathematical Sciences, vol. 116, Springer-Verlag, New York, 1996. Qualitative studies of linear equations. · Zbl 0869.35001
[35] François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 1, Plenum Press, New York-London, 1980. Pseudodifferential operators; The University Series in Mathematics. · Zbl 0453.47027
[36] Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent. Math. 130 (1997), no. 1, 39 – 72. · Zbl 0892.76009 · doi:10.1007/s002220050177
[37] Sijue Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc. 12 (1999), no. 2, 445 – 495. · Zbl 0921.76017
[38] Hideaki Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 49 – 96. · Zbl 0493.76018 · doi:10.2977/prims/1195184016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.