zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos in the fractional order Chen system and its control. (English) Zbl 1069.37025
Summary: We study the chaotic behavior in the fractional order Chen system. We show that chaos exists in the fractional order Chen system with order less than 3. The lowest order we found to have chaos in this system is 2,1. Linear feedback control of chaos in this system is also studied.

37D45Strange attractors, chaotic dynamics
26A33Fractional derivatives and integrals (real functions)
93B52Feedback control
Full Text: DOI
[1] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[2] Hilfer, R.: Applications of fractional calculus in physics. (2001) · Zbl 0998.26002
[3] Bagley, R. L.; Calico, R. A.: Fractional order state equations for the control of viscoelastically damped structures. J. guid., contr. Dyn. 14, 304-311 (1991)
[4] Koeller, R. C.: Application of fractional calculus to the theory of viscoelasticity. J. appl. Mech. 51, 299 (1984) · Zbl 0544.73052
[5] Koeller, R. C.: Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics. Acta mech. 58, 251-264 (1986) · Zbl 0578.73040
[6] Sun, H. H.; Abdelwahad, A. A.; Onaral, B.: Linear approximation of transfer function with a pole of fractional order. IEEE trans. Auto. contr. 29, 441-444 (1984) · Zbl 0532.93025
[7] Ichise, M.; Nagayanagi, Y.; Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. electroanal. Chem. 33, 253-265 (1971)
[8] Heaviside, O.: Electromagnetic theory. (1971) · Zbl 30.0801.03
[9] Oustaloup, A.; Sabatier, J.; Lanusse, P.: From fractal robustness to CRONE control. Fract. calculus appl. Anal. 2, 1-30 (1999) · Zbl 1111.93310
[10] Oustaloup, A.; Levron, F.; Nanot, F.; Mathieu, B.: Frequency band complex non integer differentiator: characterization and synthesis. IEEE trans. CAS-I 47, 25-40 (2000)
[11] Chen, Y. Q.; Moore, K.: Discretization schemes for fractional-order differentiators and integrators. IEEE trans. CAS-I 49, 363-367 (2002)
[12] Hartley, T. T.; Lorenzo, C. F.: Dynamics and control of initialized fractional-order systems. Nonlinear dyn. 29, 201-233 (2002) · Zbl 1021.93019
[13] Hwang, C.; Leu, J. -F.; Tsay, S. -Y.: A note on time-domain simulation of feedback fractional-order systems. IEEE trans. Auto. contr. 47, 625-631 (2002)
[14] Podlubny, I.; Petras, I.; Vinagre, B. M.; O’leary, P.; Dorcak, L.: Analogue realizations of fractional-order controllers. Nonlinear dyn. 29, 281-296 (2002)
[15] Hartley, T. T.; Lorenzo, C. F.; Qammer, H. K.: Chaos in a fractional order Chua’s system. IEEE trans. CAS-I 42, 485-490 (1995)
[16] Arena P, Caponetto R, Fortuna L, Porto D. Chaos in a fractional order Duffing system. In: Proc. ECCTD, Budapest 1997. p. 1259--62
[17] Ahmad, W.; El-Khazali, R.; El-Wakil, A.: Fractional-order wien-Bridge oscillator. Electr. lett. 37, 1110-1112 (2001)
[18] Ahmad, W. M.; Sprott, J. C.: Chaos in fractional-order autonomous nonlinear systems. Chaos, solitons & fractals 16, 339-351 (2003) · Zbl 1033.37019
[19] Ahmad, W. M.; Harb, W. M.: On nonlinear control design for autonomous chaotic systems of integer and fractional orders. Chaos, solitons & fractals 18, 693-701 (2003) · Zbl 1073.93027
[20] Grigorenko, I.; Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. rev. Lett. 91, 034101 (2003) · Zbl 1234.49040
[21] Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D.: Bifurcation and chaos in noninteger order cellular neural networks. Int. J. Bifur. chaos 7, 1527-1539 (1998) · Zbl 0936.92006
[22] Arena, P.; Fortuna, L.; Porto, D.: Chaotic behavior in noninteger-order cellular neural networks. Phys. rev. E 61, 776-781 (2000)
[23] Li C, Chen G. Chaos and hyperchaos in fractional order Rössler equations. Preprint, 2003
[24] Li, C.; Liao, X.; Yu, J.: Synchronization of fractional order chaotic systems. Phys. rev. E 68, 067203 (2003)
[25] Chen, G.; Ueta, T.: Yet another chaotic attractor. Int. J. Bifur. chaos 9, 1465-1466 (1999) · Zbl 0962.37013
[26] Charef, A.; Sun, H. H.; Tsao, Y. Y.; Onaral, B.: Fractal system as represented by singularity function. IEEE trans. Auto. contr. 37, 1465-1470 (1992) · Zbl 0825.58027
[27] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501
[28] Chen, G.; Yu, X.: Chaos control: theory and applications. (2003) · Zbl 1029.00015
[29] Chen, G.; Dong, X.: From chaos to order: methodologies, perspectives and applications. (1998) · Zbl 0908.93005
[30] Li C. Private communication with Grigorenko I. 2003
[31] Zaslavsky, G. M.: Chaos, fractional kinetics, and anomalous transport. Phys. rep. 371, 461-580 (2002) · Zbl 0999.82053