×

Global chaos in a periodically forced, linear system with a dead-zone restoring force. (English) Zbl 1069.37027

Summary: The Poincaré mapping and the corresponding mapping sections for global motions in a linear system possessing a dead-zone restoring force are introduced through switching planes pertaining to two constraints. The global periodic motions based on the Poincaré mapping are determined, and the eigenvalue analysis for the stability and bifurcation of periodic motion is carried out. Global chaos in such a system is investigated numerically from the unstable global periodic motions analytically determined. The bifurcation scenario with varying parameters is presented. The mapping structures of periodic and chaotic motions are discussed. The Poincaré mapping sections for global chaos are given for illustration. The grazing phenomenon embedded in chaotic motion is observed in this investigation.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
34C28 Complex behavior and chaotic systems of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hartog, J. P.D.; Mikina, S. J., Forced vibrations with non-linear spring constants, ASME J. Appl. Mech., 58, 157-164 (1932)
[2] Shaw, S. W.; Holmes, P. J., A periodically forced piecewise linear oscillator, J. Sound Vibr., 90, 1, 121-155 (1983) · Zbl 0561.70022
[3] Natsiavas, S., Periodic response and stability of oscillators with symmetric trilinear restoring force, J. Sound Vibr., 134, 2, 315-331 (1989) · Zbl 1235.70094
[4] Natsiavas, S.; Verros, G., Dynamics of oscillators with strongly nonlinear asymmetric damping, Nonlinear Dynam., 20, 221-246 (1999) · Zbl 0959.70014
[5] Theodossiades, S.; Natsiavas, S., Non-linear dynamics of gear-pair systems with periodic stiffness and backlash, J. Sound Vibr., 229, 2, 287-310 (2000)
[6] Nordmark, A. B., Non-periodic motion caused by grazing incidence in an impact oscillator, J. Sound Vibr., 145, 279-297 (1991)
[7] Kleczka, M.; Kreuzer, E.; Schiehlen, W., Local and global stability of a piecewise linear oscillator, Philos. Trans.: Phys. Sci. Eng., Nonlinear Dynam. Eng. Syst., 338, 1651, 533-546 (1992) · Zbl 0748.70012
[8] Foale, S., Analytical determination of bifurcations in an impact oscillators, Philos. Trans. Royal Soc. Lond., 347, 353-364 (1994) · Zbl 0813.70012
[9] Wiercigroch, M., Modeling of dynamical system with motion dependent discontinuities, Chaos, Solitons & Fractals, 11, 2429-2442 (2000) · Zbl 0966.70017
[10] Woo, K. C.; Rodger, A. A.; Neilson, R. D.; Wiercigroch, M., Application of the harmonic balance method to ground moling machines operating in periodic regimes, Chaos, Solitons & Fractals, 11, 2515-2525 (2000) · Zbl 0955.70509
[11] Czolczynski, K.; Blazejczyk-Okolewska, B.; Kapitanik, T., Impact force generator: self-synchronization and regularity of motion, Chaos, Solitons & Fractals, 11, 2505-2510 (2000) · Zbl 0955.74514
[12] Blazejczyk-Okolewska, B.; Brindely, J.; Czolczynski, K.; Kapitanik, T., Anti-phase synchronization of chaos by noncontinuous coupling: two impacting oscillators, Chaos, Solitons & Fractals, 12, 1823-1826 (2001) · Zbl 0994.37044
[13] Czolczynski, K.; Kapitanik, T., Influence of the mass and stiffness ratio on a periodic motion of two impacting oscillators, Chaos, Solitons & Fractals, 17, 1823-1826 (2003)
[14] Lenci, S.; Rega, G., Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation, Chaos, Solitons & Fractals, 11, 2453-2472 (2000) · Zbl 0964.70018
[15] Damgov, V.; Trenchev, Pl., Class of kick-excited self-adaptive dynamical systems: “Quantized” oscillation excitation, Chaos, Solitons & Fractals, 17, 11-40 (2003) · Zbl 1098.34539
[16] Luo, G. W.; Xie, J. H.; Guo, S. H.L., Periodic motions and global bifurcations of a two-degree-of-freedom system with plastic vibro-impact, J. Sound Vibr., 240, 837-858 (2000)
[18] Han, R. P.S.; Luo, A. C.J.; Deng, W., Chaotic motion of a horizontal impact pair, J. Sound Vibr., 181, 231-250 (1995) · Zbl 1237.70028
[19] Luo, A. C.J.; Han, R. P.S., Dynamics of a bouncing ball with a periodic vibrating table revisited, Nonlinear Dynam., 10, 1-18 (1996)
[20] Luo, A. C.J., An unsymmetrical motion in a horizontal impact oscillator, ASME J. Vibr. Acoust., 124, 420-426 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.