Khater, A. H.; Callebaut, D. K.; Sayed, S. M. Conservation laws for some nonlinear evolution equations which describe pseudo-spherical surfaces. (English) Zbl 1069.37058 J. Geom. Phys. 51, No. 3, 332-352 (2004). Summary: The relation between pseudo-spherical surfaces and the inverse scattering method is exemplified for several evolution equations. Conservation laws for the latter ones are obtained using a geometrical property of these pseudo-spherical surfaces. Cited in 13 Documents MSC: 37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry 58A10 Differential forms in global analysis 14Q10 Computational aspects of algebraic surfaces 35Q51 Soliton equations 53A05 Surfaces in Euclidean and related spaces 37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems Keywords:conservation laws; nonlinear evolution equations; geometrical methods; inverse scattering method; differential forms; solitons; hyper-surfaces PDF BibTeX XML Cite \textit{A. H. Khater} et al., J. Geom. Phys. 51, No. 3, 332--352 (2004; Zbl 1069.37058) Full Text: DOI References: [1] Sasaki, R., Soliton equations and pseudo-spherical surfaces, Nucl. Phys. B, 154, 343-357 (1979) [2] Ablowitz, M. J.; Kaup, D. J.; Newell, A. C.; Segur, H., The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 53, 243 (1974) [3] Chern, S. S.; Tenenblat, K., Pseudo-spherical surfaces and evolution equations, Appl. Math., 74, 1 (1986) · Zbl 0605.35080 [4] Jorge, L. P.; Tenenblat, K., Linear problems associated to evolution equations of type \(u_{ tt }=F(u,u_x,u_{ xx },u_{t\) · Zbl 0642.35017 [5] Rablo, M. L., On evolution equations which describe pseudo-spherical surfaces, Stud. Appl. Math., 81, 221 (1989) [6] Rablo, M. L.; Tenenblat, K., On equations of type \(u_{ xt }=F(u,u_x )\) which describe pseudo-spherical surfaces, J. Math. Phys., 31, 1400 (1990) [7] Cavalcante, J. A.; Tenenblat, K., Conservation laws for nonlinear evolution equations, J. Math. Phys., 29, 1044-1049 (1988) · Zbl 0695.35038 [8] Reyes, E. G., Pseudo-spherical surfaces and integrability of evolution equations, J. Diff. Equ., 147, 195-230 (1998) · Zbl 0916.35047 [9] Reyes, E. G., Conservation laws and Calapso-Guichard deformations of equations describing pseudo-spherical surfaces, J. Math. Phys., 41, 2968 (2000) · Zbl 0992.53005 [10] Beals, R.; Rabelo, M.; Tenenblat, K., Bäcklund transformations and inverse scattering solutions for some pseudo-spherical surfaces, Stud. Appl. Math., 81, 125 (1989) · Zbl 0697.58059 [11] Kamran, N.; Tenenblat, K., On differential equations describing pseudo-spherical surfaces, J. Diff. Equ., 104, 60-116 (1995) · Zbl 0815.35036 [12] Crampin, M., Solitons and SL \((2,R)\), Phys. Lett. A, 66, 170-172 (1978) [13] Ding, Q., The NLS-equation and its SL \((2,R)\) structure, J. Phys. A: Math. Gen., 33, 325-329 (2000) [14] Ding, Q.; Tenenblat, K., On differential systems describing surfaces of constant curvature, J. Diff. Equ., 184, 185 (2002) · Zbl 1022.58005 [15] Ding, Q.; Tenenblat, K., Gauge equivalence of differential equations describing surfaces of constant Gaussian curvature, Int. J. Diff. Equ. Appl., 4, 273 (2002) · Zbl 1027.53005 [16] Marvan, M., Scalar second-order evolution equations possessing an irreducible SL2-valued zero-curvature representation, J. Phys. A, 36, 9431 (2002) · Zbl 1040.37059 [17] Shchepetilov, A. S., The geometric sense of R. Sasaki connection, J. Phys. A: Math. Gen., 36, 3893 (2003) · Zbl 1048.81032 [18] Konno, K.; Wadati, M., Simple derivation of Bäcklund transformation from Riccati form of inverse method, Prog. Theor. Phys., 53, 1652 (1975) · Zbl 1079.35505 [19] Zakharov, V. E.; Shabat, A. B., A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem: I, Func. Anal. Appl., 8, 226 (1974) · Zbl 0303.35024 [20] Wadati, M.; Sanuki, H.; Konno, K., Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws, Prog. Theor. Phys., 53, 419 (1975) · Zbl 1079.35506 [21] Reyes, E. G., Geometric integrability of the Camassa-Holm equation, Lett. Math. Phys., 59, 117 (2002) · Zbl 0997.35081 [22] Reyes, E. G., Transformations of solutions for equations and hierarchies of pseudo-spherical type, J. Phys. A: Math. Gen., 36, 125 (2003) [23] Khater, A. H.; El-Kalaawy, O. H.; Callebaut, D. K., Bäcklund transformations for Alfvén solitons in a relativistic electron-positron plasma, Phys. Scripta, 58, 545-548 (1998) [24] Khater, A. H.; Callebaut, D. K.; El-Kalaawy, O. H., Bäcklund transformations and exact soliton solutions for nonlinear Schrödinger-type equations, Nuovo Cimento B, 113, 1121-1136 (1998) · Zbl 0933.37068 [25] Khater, A. H.; Callebaut, D. K.; Ibrahim, R. S., Bäcklund transformations and Painlevé analysis: exact solutions for the unstable nonlinear Schrödinger equation modelling electron-beam plasma, Phys. Plasmas, 5, 395-400 (1998) [26] Khater, A. H.; Callebaut, D. K.; Seadawy, A. R., Nonlinear dispersive instabilities in Kelvin-Helmholtz magnetohydrodynamic flows, Phys. Scripta, 67, 340-349 (2003) · Zbl 1152.76392 [27] Khater, A. H.; Callebaut, D. K.; Seadawy, A. R., General soliton solutions of an \(n\)-dimensional complex Ginzberg-Landau equation, Phys. Scripta, 62, 353-357 (2000) [28] Khater, A. H.; Callebaut, D. K.; Malfliet, W.; Seadawy, A. R., Nonlinear dispersive instabilities in Rayleigh-Taylor magnetohydrodynamic flows, Phys. Scripta, 64, 533-547 (2001) · Zbl 1123.76370 [29] Khater, A. H.; Callebaut, D. K.; Kamel, E. S., Painlevé analysis and non-linear periodic solutions for isothermal magnetostatic atmospheres, Solar Phys., 178, 285-315 (1998) [30] Khater, A. H.; Malfliet, W.; Callebaut, D. K.; Kamel, E. S., Travelling wave solutions of some classes of nonlinear evolution equations in (1+1) and (2+1) dimensions, J. Comput. Appl. Math., 140, 469-477 (2002) · Zbl 0997.35078 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.