# zbMATH — the first resource for mathematics

Holomorphy of spectral multipliers of the Ornstein–Uhlenbeck operator. (English) Zbl 1069.47017
The closure $$\mathcal L$$ of the Ornstein–Uhlenbeck operator has spectral resolution ${\mathcal L}f=\sum_{n=0}^\infty n P_n f,$ where $$P_n$$ is the orthogonal projection onto the linear span of Hermite polynomials of degree $$n$$ in $$d$$ variables. For a given function $$M$$ defined in $$\mathbb R^+$$, define the operator $$M({\mathcal L})f=\sum_{n=0}^\infty M(n) P_n f$$. Then $$M$$ is said to be an $$L^p(\gamma)$$ spectral multiplier if $$M({\mathcal L})$$ extends to a bounded operator on $$L^p(\gamma)$$ ($$\gamma$$ being the Gauss measure on $$\mathbb R^d$$).
In this paper, the authors study the problem of finding conditions on the $$L^p(\gamma)$$ spectral multipliers $$M$$ that force $$M$$ to extend to a holomorphic function in some sector containing the positive real line. In fact, they prove that if $$1<p<\infty$$, $$p\neq 2$$, and $$M$$ is a continuous function on $$\mathbb R^+$$ such that $$\sup_{t>0} | | M(t{\mathcal L})| | _{L^p(\gamma)}<\infty,$$ then $$M$$ extends to a holomorphic function in the sector $$\{z\in{\mathbb C}: | \arg\;z| <\arcsin | 2/p-1| \}$$. This type of result is a continuation of some previous results in [J. Funct. Anal. 183, 413–450 (2001; Zbl 0995.47010)]. Related results for the case $$p=1$$ are also presented.

##### MSC:
 47A60 Functional calculus for linear operators 42B15 Multipliers for harmonic analysis in several variables 47D03 Groups and semigroups of linear operators 60G15 Gaussian processes
Full Text:
##### References:
  Bakry, D., L’hypercontractivité et son utilisation en théorie des semi-groupes, (), 1-114 · Zbl 0856.47026  Christ, M.; Müller, D., On Lp spectral multipliers for a solvable Lie group, Geom. funct. anal., 6, 860-876, (1996) · Zbl 0878.43008  Clerc, J.-L.; Stein, E.M., Lp multipliers for noncompact symmetric spaces, Proc. natl acad. sci. USA, 71, 3911-3912, (1974) · Zbl 0296.43004  Cowling, M., Harmonic analysis on semigroups, Ann. of math., 117, 267-283, (1983) · Zbl 0528.42006  Cowling, M.; Doust, I.; McIntosh, A.; Yagi, A., Banach space operators with a bounded H∞ functional calculus, J. austral. math. soc., 60, 51-89, (1996) · Zbl 0853.47010  Davies, E.B., Heat kernels and spectral theory, Cambridge tracts in mathematics, Vol. 92, (1989), Cambridge University Press Cambridge · Zbl 0699.35006  Duren, P.L., Theory of Hp spaces, Pure and applied mathematics, Vol. 38, (1970), Academic Press New York · Zbl 0215.20203  Epperson, J.B., The hypercontractive approach to exactly bounding an operator with complex Gaussian kernel, J. funct. anal., 87, 1-30, (1989) · Zbl 0696.47028  Garcia-Cuerva, J.; Mauceri, G.; Sjögren, P.; Torrea, J.L., Spectral multipliers for the ornstein – uhlenbeck semigroup, J. analyse math., 78, 281-305, (1999) · Zbl 0939.42007  Garcia-Cuerva, J.; Mauceri, G.; Meda, S.; Sjögren, P.; Torrea, J.L., Spectral multipliers for the ornstein – uhlenbeck semigroup, J. funct. anal., 183, 413-450, (2001) · Zbl 0995.47010  Hebisch, W., Spectral multipliers on exponential growth solvable Lie groups, Math. Z., 229, 435-441, (1998) · Zbl 0946.22010  Ludwig, J.; Müller, D., Sub-Laplacians of holomorphic Lp type on rank one AN-groups and related solvable groups, J. funct. anal., 170, 366-427, (2000) · Zbl 0957.22013  Liskevich, V.A.; Perelmuter, M.A., Analyticity of Submarkovian semigroups, Proc. amer. math. soc., 123, 1097-1104, (1995) · Zbl 0826.47030  Meda, S., A general multiplier theorem, Proc. amer. math. soc., 110, 639-647, (1990) · Zbl 0760.42007  M. Reed, B. Simon, Methods of Modern Mathematical Physics, Vol. I. Functional Analysis Revised and Enlarged Edition, Academic Press, New York, 1980.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.