[1] |
Bonikowski, Z.; Bryniarski, E.; Wybraniec, U.: Extensions and intentions in the rough set theory. Inform. sci. 107, 149-167 (1998) · Zbl 0934.03069 |

[2] |
Bonikowski, Z.: Algebraic structures of rough sets. Rough sets, fuzzy sets and knowledge discovery (1994) · Zbl 0819.04009 |

[3] |
Bryniaski, E.: A calculus of rough sets of the first order. Bull. Pol acad. Sci. 16, 71-77 (1989) |

[4] |
Cattaneo, G.: Abstract approximation spaces for rough theories. Rough sets in knowledge discovery 1: methodology and applications (1998) · Zbl 0927.68087 |

[5] |
Lin, T.; Liu, Q.: Rough approximate operators: axiomatic rough set theory. Rough sets, fuzzy sets and knowledge discovery (1994) · Zbl 0818.03028 |

[6] |
Pawlak, Z.: Rough sets, theoretical aspects of reasoning about data. (1991) · Zbl 0758.68054 |

[7] |
Pomykala, J. A.: Approximation operations in approximation space. Bull. Pol acad. Sci. 9--10, 653-662 (1987) |

[8] |
Skowron, A.; Stepaniuk, J.: Tolerance approximation spaces. Fundam. inform. 27, 245-253 (1996) · Zbl 0868.68103 |

[9] |
Slowinski, R.; Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE trans. Data knowledge eng. 2, 331-336 (2000) |

[10] |
Wasilewska, A.: Topological rough algebras. Rough sets & data mining (1997) · Zbl 0860.03042 |

[11] |
F. Wang, Modeling, analysis and synthesis of linguistic dynamic systems: a computational theory, in: Proceedings of IEEE International Workshop on Architecture for Semiotic Modeling and Situation Control in Large Complex Systems, Monterery, CA, 27--30 August 1995, pp. 173--178 |

[12] |
Wang, F.: Outline of a computational theory for linguistic dynamic systems: toward computing with words. Int. J. Intell. contr. Syst. 2, 211-224 (1998) |

[13] |
Yao, Y. Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Inform. sci. 101, 239-259 (1998) · Zbl 0949.68144 |

[14] |
Yao, Y. Y.: Constructive and algebraic methods of theory of rough sets. Inform. sci. 109, 21-47 (1998) · Zbl 0934.03071 |

[15] |
Zadeh, L. A.: Fuzzy sets. Inform. contr. 8, 338-353 (1965) · Zbl 0139.24606 |

[16] |
Zadeh, L. A.: The concept of a linguistic variable and its application to approximate reasoning----I, II, III. Inform. sci. 8, No. 9, 199-249 (1975) · Zbl 0397.68071 |

[17] |
Zadeh, L. A.: Fuzzy logic=computing with words. IEEE trans. Fuzzy syst. 4, 103-111 (1996) |

[18] |
Zakowski, W.: Approximations in the space (U, \prod). Demonstratio Mathematica 16, 761-769 (1983) |

[19] |
Zhu, F.; He, H.: Logical properties of rough sets. Proceedings of the fourth international conference on high performance computing in the Asia-Pacific region, 670-671 (2000) |

[20] |
Zhu, F.; He, H.: The axiomization of the rough set. Chinese J. Comput. 23, 330-333 (2000) |

[21] |
F. Zhu, On covering generalized rough sets, MS thesis, The University of Arizona, Tucson, Arizona, USA, May, 2002 |

[22] |
Zhu, F.; Wang, F.: Some results on covering generalized rough sets. Pattern recog. Artificial intell. 15, 6-13 (2002) |