zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new class of LRS Bianchi type-I cosmological models in Lyra geometry. (English) Zbl 1069.83500
Summary: LRS Bianchi type-I models have been studied in the cosmological theory based on Lyra’s geometry. A new class of exact solutions has been obtained by considering a time dependent displacement field for constant deceleration parameter models of the universe. The physical behaviour of the models is examined in vacuum and in the presence of perfect fluids.

83C20Classes of solutions of equations in general relativity
83D05Relativistic gravitational theories other than Einstein’s
Full Text: DOI
[1] Folland, G.: Weyl manifolds. J. diff. Geom. 4, 145-153 (1970) · Zbl 0195.23904
[2] Lyra, G.: Über eine modifikation der riemannschen geomtrie. Math. Z. 54, 52-54 (1951) · Zbl 0042.15902
[3] Sen, D. K.: A static cosmological models. Z. für phys. 149, 311-323 (1957) · Zbl 0078.19501
[4] Sen, D. K.; Dunn, K. A.: A scalar--tensor theory of gravitation in a modified Riemannian manifold. J. math. Phys. 12, 578-586 (1971) · Zbl 0211.24804
[5] Halford, W. D.: Cosmological theory based on lyra’s geometry. Aust. J. Phys. 23, 863-869 (1970)
[6] Halford, W. D.: Scalar--tensor theory of gravitation in lyra manifold. J. math. Phys. 13, 1699-1703 (1972)
[7] Sen, D. K.; Vanstone, J. R.: On Weyl and lyra manifolds. J. math. Phys. 13, 990-993 (1972) · Zbl 0236.53035
[8] Bhamra, K. S.: A cosmological model of class one on lyra’s manifold. Aust. J. Phys. 27, 541-547 (1974)
[9] Karade, T. M.; Borikar, S. M.: Thermodynamic equilibrium of a gravitating sphere in lyra geometry. Gen. rel. Gravit. 9, 431-436 (1978)
[10] Kalyanshetti, S. B.; Waghmode, B. B.: A static cosmological model in Einstein--Cartan theory. Gen. rel. Gravit. 14, 823-830 (1982) · Zbl 0494.53027
[11] Reddy, D. R. K.; Innaiah, P.: A plane symmetric cosmological model in lyra manifold. Astrophys. space sci. 123, 49-52 (1986) · Zbl 0592.76199
[12] Beesham, A.: Vacuum Friedmann cosmology based on lyra’s manifold. Astrophys. space sci. 127, 189-191 (1986)
[13] Reddy, D. R. K.; Venkateswarlu, R.: A static conformally flat cosmological model in lyra’s manifold. Astrophys. space sci. 136, 183-186 (1987)
[14] Soleng, H. H.: Cosmologies based on lyra’s geometry. Gen. rel. Gravit. 19, 1213-1216 (1987)
[15] Beesham, A.: FLRW cosmological models in lyra’s manifold with time dependent displacement field. Aust. J. Phys. 41, 833-842 (1988)
[16] Singh, T.; Singh, G. P.: Bianchi type-I cosmological models in lyra geometry. J. math. Phys. 32, 2456-2458 (1991) · Zbl 0736.76084
[17] Singh, T.; Singh, G. P.: Bianchi type-II cosmological models in lyra geometry. Nuovo cimento B 106, 617-622 (1991) · Zbl 0734.76099
[18] Singh, T.; Singh, G. P.: Bianchi type III and Kantowski--Sachs cosmological models in lyra geometry. Int. J. Theor. phys. 31, 1433-1446 (1992)
[19] Singh, T.; Singh, G. P.: Lyra’s geometry and cosmology: a review. Fortschr. phys. 41, 737-764 (1993)
[20] Singh, G. P.; Desikan, K.: A new class of cosmological models in lyra geometry. Pramana-J. Phys. 49, 205-212 (1997)
[21] Hoyle, F.: A new model for the expanding universe. Mon. not. Roy. astron. Soc. 108, 372 (1948) · Zbl 0031.38304
[22] Hoyle, F.; Narlikar, J. V.: On the avoidance of singularities in C-field cosmology. Proc. roy. Soc. London ser. A 278, 465-478 (1964) · Zbl 0116.44701
[23] Hoyle, F.; Narlikar, J. V.: Time symmetric electrodynamics and the arrow of the time in cosmology. Proc. roy. Soc. London ser. A 277, 1-23 (1964) · Zbl 0118.23404
[24] D. Kramer, et al., Exact Solutions of Einstein’s Field Equations, Cambridge University Press, Cambridge, 1980. · Zbl 0449.53018
[25] Berman, M. S.: A special law of variation for hubble’s parameter. Nuovo cimento B 74, 182-186 (1983)
[26] Berman, M. S.; Gomide, F. M.: Cosmological models with constant deceleration parameter. Gen. rel. Gravit. 20, 191-198 (1988)
[27] Johri, V. B.; Desikan, K.: Cosmological models with constant deceleration parameter in nordtvedt’s theory. Pramana-J. Phys. 42, 473-481 (1994)
[28] Maharaj, S. D.; Naidoo, R.: Solutions to the field equations and the deceleration parameter. Astrophys. space sci. 208, 261-276 (1993) · Zbl 0806.53080
[29] Pradhan, A.; Yadav, V. K.; Chakrabarty, I.: Bulk viscous FRW cosmology in lyra geometry. Int. J. Mod. phys. D 10, 339-349 (2001)
[30] Beesham, A.: Cosmological models with a variable cosmological term and bulk viscous model. Phys. rev. D 48, 3539-3543 (1993)
[31] G.F.R. Ellis, in: R.K. Sach (Ed.), General Relativity and Cosmology, Academic Press, New York, 1971, p. 117. · Zbl 0337.53058