Borodin, Alexei; Soshnikov, Alexander Janossy densities. I: Determinantal ensembles. (English) Zbl 1070.15020 J. Stat. Phys. 113, No. 3-4, 595-610 (2003). Summary: We derive an elementary formula for Janossy densities for determinantal point processes with a finite rank projection-type kernel. In particular, for \(\beta =2\) polynomial ensembles of random matrices we show that the Janossy densities on an interval \(I\subset {\mathbb R}\) can be expressed in terms of the Christoffel-Darboux kernel for the orthogonal polynomials on the complement of \(I\).For Part II, see Zbl 1071.15027. Cited in 1 ReviewCited in 12 Documents MSC: 15B52 Random matrices (algebraic aspects) 60G55 Point processes (e.g., Poisson, Cox, Hawkes processes) 35Q15 Riemann-Hilbert problems in context of PDEs 82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics Keywords:random matrices; orthogonal polynomials; Janossy densities; Riemann-Hilbert problem; determinantal point processes; finite rank projection-type kernel; Christoffel-Darboux kernel Citations:Zbl 1071.15027 PDF BibTeX XML Cite \textit{A. Borodin} and \textit{A. Soshnikov}, J. Stat. Phys. 113, No. 3--4, 595--610 (2003; Zbl 1070.15020) Full Text: DOI arXiv OpenURL