Dispersive limits in the homogenization of the wave equation. (English) Zbl 1070.35006

The author studies a scalar wave equation (the Klein-Gordon equation) with a large potential in a periodic medium. The period is supposed of order \(\varepsilon\) and the potential is of order \(\varepsilon^{-2}\). The homogenized limit depends on the sign of the first cell eingenvalue \(\lambda_1\). If \(\lambda_1=0\), then the homogenized problem gives a standard wave equation. If \(\lambda_1\neq 0\), then, upon changing the time scale to focus on large times of order \(\varepsilon^{-1}\), the author obtains dispersive homogenized problems, i.e. equations which are not of second order in time. If \(\lambda_1 < 0\), the homogenized equation becomes parabolic, while, for \(\lambda_1 > 0\), the homogenized equation is of Schrödinger type.


35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35L20 Initial-boundary value problems for second-order hyperbolic equations
Full Text: DOI Numdam Numdam EuDML


[1] Allaire, G., Homogenization and two-scale convergence , SIAM J. Math. Anal.23(6), p. 1482-1518 (1992). · Zbl 0770.35005
[2] Allaire, G., Capdeboscq, Y., Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Engrg.187, p. 91-117 (2000). · Zbl 1126.82346
[3] Allaire, G., Malige, F., Analyse asymptotique spectrale d’un problème de diffusion neutronique, C. R. Acad. Sci. Paris Série I 324, p. 939-944 (1997). · Zbl 0879.35153
[4] Allaire, G., Piatnitski, A., Uniform Spectral Asymptotics for Singularly Perturbed Locally Periodic Operators, Com. in PDE27, p. 705-725 (2002). · Zbl 1026.35012
[5] Bensoussan, A., Lions, J.-L., Papanicolaou, G., Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978. · Zbl 0404.35001
[6] Brahim-Otsmane, S., Francfort, G., Murat, F., Correctors for the homogenization of the wave and heat equations, J. Math. Pures Appl. (9) 71, p. 197-231 (1992). · Zbl 0837.35016
[7] Castro, C. , Zuazua, E., Low frequency asymptotic analysis of a string with rapidly oscillating density, SIAM J. Appl. Math.60(4), p. 1205-1233 (2000 ). · Zbl 0967.34074
[8] Francfort, G., Murat, F., Oscillations and energy densities in the wave equation, Comm. Partial Differential Equations17, p. 1785-1865 (1992). · Zbl 0803.35010
[9] Gérard, P., Microlocal defect measures, Comm. Partial Diff. Equations16, p. 1761-1794 (1991 ). · Zbl 0770.35001
[10] Kozlov, S., Reducibility of quasiperiodic differential operators and averaging, Transc. Moscow Math. Soc., 2, p. 101-126 (1984). · Zbl 0566.35036
[11] Lions, J.-L. , Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués , Masson, Paris ( 1988). · Zbl 0653.93002
[12] Nguetseng, G., A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal.20(3), p. 608-623 (1989). · Zbl 0688.35007
[13] Orive, R., Zuazua, E., Pazoto, A., Asymptotic expansion for damped wave equations with periodic coefficients, Math. Mod. Meth. Appl. Sci.11, p. 1285-1310 (2001 ). · Zbl 1013.35014
[14] Sanchez-Palencia, E., Non homogeneous media and vibration theory , 127, Springer Verlag (1980 ). · Zbl 0432.70002
[15] Tartar, L., H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh115A, p. 193-230 (1990). · Zbl 0774.35008
[16] Vanninathan, M., Homogenization of eigenvalue problems in perforated domains, Proc. Indian Acad. Sci. Math. Sci.90, p. 239-271 (1981). · Zbl 0486.35063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.