Wazwaz, Abdul-Majid Exact solutions with solitons and periodic structures for the Zakharov-Kuznetsov (ZK) equation and its modified form. (English) Zbl 1070.35075 Commun. Nonlinear Sci. Numer. Simul. 10, No. 6, 597-606 (2005). Summary: We study the Zakharov-Kuznetsov equation and two of its modified forms. We employ the sine-cosine algorithm to back up our analysis. Exact solutions with solitons and periodic structures are obtained. Cited in 35 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 35Q51 Soliton equations Keywords:Solitons; Periodic solutions; Zakharov-Kuznetsov equation; KP equation; KdV equation; Sine-cosine method Software:MACSYMA PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Commun. Nonlinear Sci. Numer. Simul. 10, No. 6, 597--606 (2005; Zbl 1070.35075) Full Text: DOI References: [1] Monro, S.; Parkes, E. J., The derivation of a modified Zakharov-Kuznetsov equation and the stability of its solutions, J. Plasma Phys, 62, 3, 305-317 (1999) [2] Monro, S.; Parkes, E. J., Stability of solitary-wave solutions to a modified Zakharov-Kuznetsov equation, J. Plasma Phys, 64, 3, 411-426 (2000) [3] Schamel, H., A modified Korteweg-de-Vries equation for ion acoustic waves due to resonant electrons, J. Plasma Phys, 9, 3, 377-387 (1973) [4] Ablowitz, M. J.; Clarkson, P. A., Solitons, nonlinear evolution equations and inverse scattering (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0762.35001 [5] Feng, B.; Malomed, B.; Kawahara, T., Cylindrical solitary pulses in a two-dimensional stabilized Kuramoto-Sivashinsky system, Physica D, 127-138 (2003) · Zbl 1006.76015 [6] Wadati, M., Introduction to solitons, Pramana: J. Phys, 57, 5-6, 841-847 (2001) [7] Wadati, M., The exact solution of the modified Kortweg-de Vries equation, J. Phys. Soc. Jpn, 32, 1681-1687 (1972) [8] Wadati, M., The modified Kortweg-de Vries equation, J. Phys. Soc. Jpn, 34, 1289-1296 (1973) · Zbl 1334.35299 [9] Li, B.; Chen, Y.; Zhang, H., Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation, Appl. Math. Comput, 146, 653-666 (2003) · Zbl 1037.35070 [10] Kivshar, Y. S.; Pelinovsky, D. E., Self-focusing and transverse instabilities of solitary waves, Phys. Rep, 331, 117-195 (2000) [11] Kadomtsev, B. B.; Petviashvili, V. I., Sov. Phys. JETP, 39, 285-295 (1974) [12] Zakharov, V. E.; Kuznetsov, E. A., On three-dimensional solitons, Sov. Phys, 39, 285-288 (1974) [13] Shivamoggi, B. K., The Painlevé analysis of the Zakharov-Kuznetsov equation, Phys. Scripta, 42, 641-642 (1990) · Zbl 1063.35550 [14] Hereman, W.; Takaoka, M., Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA, J. Phys. A, 23, 4805-4822 (1990) · Zbl 0719.35085 [15] Hereman, W.; Korpel, A.; Banerjee, P. P., A general physical approach to solitary wave construction from linear solutions, Wave Motion, 7, 283-289 (1985) [16] Infeld, E.; Rowlands, G., Nonlinear waves, solitons and chaos (1990), Cambridge University Press · Zbl 0726.76018 [17] Yan, Z., Modified nonlinearly dispersive \(mK (m,n,k)\) equations: I. New compacton solutions and solitary patterns solutions, Comput. Phys. Commun, 152, 25-33 (2003) · Zbl 1196.35192 [18] Yan, Z.; Bluman, G., New compacton soliton solutions and solitary patterns solutions of nonlinearly dispersive Boussinesq equations, Comput. Phys. Commun, 149, 11-18 (2002) · Zbl 1196.68338 [19] Wazwaz, A. M., Partial differential equations: methods and applications (2002), Balkema Publishers: Balkema Publishers The Netherlands [20] Wazwaz, A. M., New solitary-wave special solutions with compact support for the nonlinear dispersive \(K(m,n)\) equations, Chaos Solitons Fract, 13, 2, 321-330 (2002) · Zbl 1028.35131 [21] Wazwaz, A. M., Exact specific solutions with solitary patterns for the nonlinear dispersive \(K(m,n)\) equations, Chaos Solitons Fract, 13, 1, 161-170 (2001) · Zbl 1027.35115 [22] Wazwaz, A. M., General compactons solutions for the focusing branch of the nonlinear dispersive \(K(n,n)\) equations in higher dimensional spaces, Appl. Math. Comput, 133, 2/3, 213-227 (2002) · Zbl 1027.35117 [23] Wazwaz, A. M., General solutions with solitary patterns for the defocusing branch of the nonlinear dispersive \(K(n,n)\) equations in higher dimensional spaces, Appl. Math. Comput, 133, 2/3, 229-244 (2002) · Zbl 1027.35118 [24] Wazwaz, A. M., A study of nonlinear dispersive equations with solitary-wave solutions having compact support, Math. Comput. Simul, 56, 269-276 (2001) · Zbl 0999.65109 [25] Wazwaz, A. M., Compactons dispersive structures for variants of the \(K(n,n)\) and the KP equations, Chaos Solitons Fract, 13, 5, 1053-1062 (2002) · Zbl 0997.35083 [26] Wazwaz, A. M., Compactons and solitary patterns structures for variants of the KdV and the KP equations, Appl. Math. Comput, 139, 1, 37-54 (2003) · Zbl 1029.35200 [27] Wazwaz, A. M., Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method, Chaos Solitons Fract, 12, 8, 1549-1556 (2001) · Zbl 1022.35051 [28] Wazwaz, A. M., A computational approach to soliton solutions of the Kadomtsev-Petviashili equation, Appl. Math. Comput, 123, 2, 205-217 (2001) · Zbl 1024.65098 [29] Wazwaz, A. M., An analytic study of compactons structures in a class of nonlinear dispersive equations, Math. Comput. Simul, 63, 1, 35-44 (2003) · Zbl 1021.35092 [30] Wazwaz, A. M., Existence and construction of compacton solutions, Chaos Solitons Fract, 19, 3, 463-470 (2004) · Zbl 1068.35124 [31] Wazwaz, A. M., A study on nonlinear dispersive partial differential equations of compact and noncompact solutions, Appl. Math. Comput, 135, 2-3, 399-409 (2003) · Zbl 1027.35120 [32] Wazwaz, A. M., Compactons in a class of nonlinear dispersive equations, Math. Comput. Model, 37, 3/4, 333-341 (2003) · Zbl 1044.35078 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.