×

zbMATH — the first resource for mathematics

A non elliptic spectral problem related to the analysis of superconducting micro-strip lines. (English) Zbl 1070.35503
Summary: This paper is devoted to the spectral analysis of a non elliptic operator \( A \), deriving from the study of superconducting micro-strip lines. Once a sufficient condition for the self-adjointness of operator \(A\) has been derived, we determine its continuous spectrum. Then, we show that \( A \) is unbounded from below and that it has a sequence of negative eigenvalues tending to \(-\infty \). Using the Min-Max principle, a characterization of its positive eigenvalues is given. Thanks to this characterization, some conditions on the geometrical (large width) and physical (large dielectric permittivity in modulus) properties of the strip that ensure the existence of positive eigenvalues are derived. Finally, we analyze the asymptotic behavior of the eigenvalues of \(A\) as the dielectric permittivity of the strip goes to \(-\infty \).

MSC:
35P20 Asymptotic distributions of eigenvalues in context of PDEs
47B25 Linear symmetric and selfadjoint operators (unbounded)
82D55 Statistical mechanical studies of superconductors
78A50 Antennas, waveguides in optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] A. Bamberger and A.-S. Bonnet , Mathematical Analysis of the Guided Modes of an Optical Fiber . SIAM J. Math. Anal. 21 ( 1990 ) 1487 - 1510 . Zbl 0729.35090 · Zbl 0729.35090 · doi:10.1137/0521082
[2] A.-S. Bonnet-Bendhia , G. Caloz and F. Mahé , Guided Modes of Integrated Optical Guides . A Mathematical Study. IMA J. Appl. Math. 60 ( 1998 ) 225 - 261 . Zbl 0914.35130 · Zbl 0914.35130 · doi:10.1093/imamat/60.3.225
[3] A.-S. Bonnet-Bendhia , M. Dauge and K. Ramdani , Analyse Spectrale et Singularités d’un Problème de Transmission non Coercif . C. R. Acad. Sci. Paris Sér. I 328 ( 1999 ) 717 - 720 . Zbl 0932.35153 · Zbl 0932.35153 · doi:10.1016/S0764-4442(99)80241-9
[4] A.-S. Bonnet-Bendhia , J. Duterte and P. Joly , Mathematical Analysis of Elastic Surface Waves in Topographic Waveguides . Math. Models Methods Appl. Sci. 9 ( 1999 ) 755 - 798 . Zbl 0946.74034 · Zbl 0946.74034 · doi:10.1142/S0218202599000373
[5] A.-S. Bonnet-Bendhia and K. Ramdani , Mathematical Analysis of Conducting and Superconducting Transmission Lines . SIAM J. Appl. Math. 60 ( 2000 ) 2087 - 2113 . Zbl 1136.78315 · Zbl 1136.78315 · doi:10.1137/S0036139999352420
[6] J.-M. Cognet , Étude des modes guidés dans une ligne supraconductrice : le cas monodimensionnel . Rapport Interne n\(^\circ \)295, ENSTA, Paris ( 1997 ).
[7] R.E. Collins , Foundations for microwave engineering . Mc Graw-Hill Inc. ( 1992 ).
[8] P. Joly and C. Poirier , Mathematical Analysis of Electromagnetic Open Wave-guides . RAIRO Modèl. Math. Anal. Numér. 29 ( 1995 ) 505 - 575 . Numdam | Zbl 0834.35126 · Zbl 0834.35126 · eudml:193783
[9] J.G. Ma and I. Wolff , Modeling the Microwave Properties of Superconductors . IEEE Trans. Microwave Theory Tech. 43 ( 1995 ) 1053 - 1059 .
[10] D. Marcuse , Theory of Dielectric Optical Waveguide . Academic Press, New-York ( 1974 ).
[11] K.K Mei and G. Liang , Electromagnetics of Superconductors . IEEE Trans. Microwave Theory Tech. 44 ( 1991 ) 1545 - 1552 .
[12] A.D. Olver , Microwave and Optical Transmission . J. Wiley & Sons Ed. ( 1992 ).
[13] K. Ramdani , Lignes Supraconductrices : Analyse Mathématique et Numérique . Ph.D. thesis, University of Paris VI, France ( 1999 ).
[14] M. Reed and B. Simon , Methods of Modern Physics , Analysis of Operators. Academic Press ( 1980 ). MR 751959 · Zbl 0459.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.