×

zbMATH — the first resource for mathematics

Ekman boundary layers in rotating fluids. (English) Zbl 1070.35505
Summary: We investigate the problem of fast rotating fluids between two infinite plates with Dirichlet boundary conditions and “turbulent viscosity” for general \(L^2\) initial data. We use the dispersive effect to prove strong convergence to the solution of the 2D Navier-Stokes equations modified by the Ekman pumping term.

MSC:
35Q30 Navier-Stokes equations
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76U05 General theory of rotating fluids
35Q35 PDEs in connection with fluid mechanics
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] A. Babin , A. Mahalov and B. Nicolaenko , Global regularity of 3D rotating Navier-Stokes equations for resonant domains . Indiana Univ. Math. J. 48 ( 1999 ) 1133 - 1176 . Zbl 0932.35160 · Zbl 0932.35160 · www.iumj.indiana.edu
[2] A. Babin , A. Mahalov and B. Nicolaenko , Global splitting, integrability and regularity of \(3\)D Euler and Navier-Stokes equations for uniformly rotating fluids . European J. Mech. B Fluids 15 ( 1996 ) 291 - 300 . Zbl 0882.76096 · Zbl 0882.76096
[3] J.-Y. Chemin , B. Desjardins , I. Gallagher and E. Grenier , Fluids with anisotropic viscosity . Modél. Math. Anal. Numér. 34 ( 2000 ) 315 - 335 . Numdam | MR 1765662 | Zbl 0954.76012 · Zbl 0954.76012 · doi:10.1051/m2an:2000143 · publish.edpsciences.org · eudml:197442
[4] J.-Y. Chemin , B. Desjardins , I. Gallagher and E. Grenier , Anisotropy and dispersion in rotating fluids . Preprint of Orsay University. MR 1935994 · Zbl 1034.35107
[5] B. Desjardins , E. Dormy and E. Grenier , Stability of mixed Ekman-Hartmann boundary layers . Nonlinearity 12 ( 1999 ) 181 - 199 . Zbl 0939.35151 · Zbl 0939.35151 · doi:10.1088/0951-7715/12/2/001
[6] I. Gallagher , Applications of Schochet’s methods to parabolic equations . J. Math. Pures Appl. 77 ( 1998 ) 989 - 1054 . Zbl 1101.35330 · Zbl 1101.35330 · doi:10.1016/S0021-7824(99)80002-6
[7] H.P. Greenspan , The theory of rotating fluids , Reprint of the \(1968\) original. Cambridge University Press, Cambridge-New York, Cambridge Monogr. Mech. Appl. Math. ( 1980 ). MR 639897 | Zbl 0443.76090 · Zbl 0443.76090
[8] E. Grenier , Oscillatory perturbations of the Navier-Stokes equations . J. Math. Pures Appl. 76 ( 1997 ) 477 - 498 . Zbl 0885.35090 · Zbl 0885.35090 · doi:10.1016/S0021-7824(97)89959-X
[9] E. Grenier and N. Masmoudi , Ekman layers of rotating fluids, the case of well prepared initial data . Comm. Partial Differential Equations 22 ( 1997 ) 953 - 975 . MR 1452174 | Zbl 0880.35093 · Zbl 0880.35093 · doi:10.1080/03605309708821290
[10] N. Masmoudi , Ekman layers of rotating fluids: The case of general initial data . Comm. Pure Appl. Math. 53 ( 2000 ) 432 - 483 . MR 1733696 | Zbl 1047.76124 · Zbl 1047.76124 · doi:10.1002/(SICI)1097-0312(200004)53:4<432::AID-CPA2>3.0.CO;2-Y
[11] Pedlovsky, Geophysical Fluid Dynamics. Springer-Verlag (1979). Zbl 0429.76001 · Zbl 0429.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.