Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. (English) Zbl 1070.60015

For bivariate exchangeable distribution functions, the authors analyze the relations among some notions of bivariate aging, of univariate aging (of the common marginals), and of bivariate dependence. A natural tool for the analysis is the notion of semicopula. As examples, the authors characterize the Schur-concavity of the corresponding bivariate exchangeable survival function, and the IFR property of the (common) marginals. Archimedean survival copulae are studied in some detail.


60E15 Inequalities; stochastic orderings
60K10 Applications of renewal theory (reliability, demand theory, etc.)
Full Text: DOI


[1] E. Arjas, I. Norros, Stochastic order and martingale dynamics in multivariate life length models: a review, in: K. Mosler, M. Scarsini (Eds.), Stochastic Orders and Decision under Risk, IMS Lecture Notes—Monograph Series, Institute of Mathematical Statistics, Hayward, California. · Zbl 0762.60079
[2] J. Averous, J.L. Dortet-Bernadet, Dependence for Archimedean copulas and aging properties of their generating functions. Mimeo, 2000. · Zbl 1066.62527
[3] Bagdonavičius, V.; Malov, S.; Nikulin, M., Characterizations and semiparametric regression estimation in Archimedean copulas, Journal of applied statistical science, 8, 2/3, 137-153, (1999) · Zbl 0923.62052
[4] Barlow, R.E.; Mendel, M.B., De Finetti-type representations for life distributions, Journal of the American statistical association, 87, 1116-1122, (1992) · Zbl 0764.62077
[5] Barlow, R.E.; Mendel, M.B., Similarity as a characteristic of wear-out, ()
[6] Barlow, R.E.; Proschan, F., Statistical theory of reliability and life testing, (1975), Holt, Rinehart and Winston New York · Zbl 0379.62080
[7] Barlow, R.E.; Spizzichino, F., Schur-concave survival functions and survival analysis, Journal of computational and applied mathematics, 46, 437-447, (1993) · Zbl 0773.62066
[8] Bassan, B.; Spizzichino, F., Stochastic comparison for residual lifetimes and Bayesian notions of multivariate aging, Advances in applied probability, 31, 1078-1094, (1999) · Zbl 0951.62085
[9] B. Bassan, F. Spizzichino, On a multivariate notion of new better than used, Proceedings of the Conference “Mathematical Methods of Reliability”, Bordeaux, 2000, pp. 167-169.
[10] Bassan, B.; Spizzichino, F., Dependence and multivariate aging: the role of level sets of the survival function, (), 229-242
[11] Bassan, B.; Spizzichino, F., On some properties of dependence and aging for residual lifetimes in the exchangeable case, (), 235-250
[12] Drouet Mari, D.; Kotz, S., Correlation and dependence, (2001), Imperial College Press London · Zbl 0977.62004
[13] F. Durante, C. Sempi, Semi-copulæ, preprint, 2003.
[14] Joe, H., Multivariate models and dependence concepts, (1997), Chapman & Hall London · Zbl 0990.62517
[15] Kimeldorf, G.; Sampson, A.R., A framework for positive dependence, Annals of the institute of statistical mathematics, 41, 31-45, (1989) · Zbl 0701.62061
[16] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms, Trends in logic—studia logica library, Vol. 8, (2000), Kluwer Academic Publishers Dordrecht · Zbl 0972.03002
[17] Marshall, A.W.; Olkin, I., Inequalities: theory of majorization and its applications, (1979), Academic Press New York · Zbl 0437.26007
[18] Nelsen, R.B., An introduction to copulas, (1999), Springer New York · Zbl 0909.62052
[19] Scarsini, M.; Spizzichino, F., Sympson-type paradoxes, dependence and aging, Journal of applied probability, 36, 119-131, (1999) · Zbl 0944.60033
[20] Schweizer, B.; Sklar, A., Probabilistic metric spaces, (1983), North-Holland New York · Zbl 0546.60010
[21] Shaked, M.; Shanthikumar, J.G., Dynamic multivariate aging notions in reliability theory, Stochastic processes and their applications, 38, 85-97, (1991) · Zbl 0732.62094
[22] F. Spizzichino, Reliability decision problems under conditions of ageing, in: J. Bernardo, J. Berger, A.P. Dawid, A.F.M. Smith (Eds.), Bayesian Statistics, Vol. 4, Clarendon Press, Oxford, 1992, pp. 803-811.
[23] Spizzichino, F., Subjective probability models for lifetimes, (2001), CRC Press Boca Raton, FL · Zbl 1078.62530
[24] M. Ubéda Flores, Cópulas y quasicópulas: interelaciones y nuevas propiedades. Aplicaciones, Ph.D. Dissertation, Universidad de Almería, 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.