zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A class of stationary random fields with a simple correlation structure. (English) Zbl 1070.62084
The author studies modeling of the correlation structure for stationary random fields on a lattice as well as for stationary random fields on $R^d$ by using linear combinations of separable correlation functions. As an application, a problem of embedding a lattice model into a continuous domain model is discussed.

62M40Statistics of random fields; image analysis
60G60Random fields
62M10Time series, auto-correlation, regression, etc. (statistics)
Full Text: DOI
[1] Bartlett, M. S.: Physical nearest neighbour systems and non-linear time series. J. appl. Probab. 8, 222-232 (1971) · Zbl 0273.62053
[2] Basu, S.; Reinsel, G. C.: Properties of the spatial unilateral first-order ARMA model. Adv. appl. Probab. 25, 631-648 (1993) · Zbl 0780.62072
[3] Basu, S.; Reinsel, G. C.: Regression models with spatially correlated errors. J. amer. Statist. assoc. 89, 88-99 (1994) · Zbl 0795.62073
[4] Besag, J.: Spatial interaction and the statistical analysis of lattice systems (with discussion). J. roy. Statist. soc. B 36, 192-236 (1974) · Zbl 0327.60067
[5] Besag, J.; Kooperberg, C.: On conditional and intrinsic autoregressions. Biometrika 82, 733-746 (1995) · Zbl 0899.62123
[6] Box, G. E. P.; Jenkins, G. M.; Reinsel, G. C.: Time series analysisforecasting and control. (1994) · Zbl 0858.62072
[7] Brockwell, P. J.: A note on the embedding of discrete-time ARMA processes. J. time ser. Anal. 16, 451-460 (1995) · Zbl 0834.62076
[8] Chan, K. S.; Tong, H.: A note on embedding a discrete parameter ARMA model in a continuous parameter ARMA model. J. time ser. Anal. 8, 277-281 (1987) · Zbl 0617.62099
[9] Chellappa, R.; Kashyap, R. L.: Digital image restoration using spatial interaction models. IEEE trans. Acoust. speech. Signal process. 31, 461-472 (1982)
[10] Derin, H.; Kelly, P. A.: Discrete-index Markov-type random processes. Proc. IEEE 77, 1485-1510 (1989)
[11] Doob, J. L.: Stochastic processes. (1953) · Zbl 0053.26802
[12] Haining, R. P.: The moving average model for spatial interaction. Trans. inst. British geographers 3, 202-225 (1978)
[13] Hansen, L. P.; Sargent, T. J.: The dimensionality of the aliasing problem in models with rational spectral densities. Econometrica 51, 377-387 (1983) · Zbl 0516.93063
[14] Kashyap, R. L.: Characterization and estimation of two-dimensional ARMA models. IEEE trans. Inform. theory 30, 736-745 (1984) · Zbl 0553.60042
[15] Ma, C.: Spatial autoregression and related spatio-temporal models. J. multivariate anal. 88, 152-162 (2004) · Zbl 1033.62095
[16] Martin, R. J.: A subclass of lattice processes applied to a problem in planar sampling. Biometrika 66, 209-217 (1979) · Zbl 0404.62017
[17] Martin, R. J.: The use of time series models and methods in the analysis of agricultural field trials. Comm. statist. Theory methods 19, 55-81 (1990)
[18] Martin, R. J.: Some results on unilateral ARMA lattice processes. J. statist. Plann. inference 50, 395-411 (1996) · Zbl 0848.62051
[19] Martin, R. J.: A three-dimensional unilateral autoregressive lattice process. J. statist. Plann. inference 59, 1-18 (1997) · Zbl 0877.62085
[20] Moore, M.: Spatial linear processes. Comm. statist. Stochastic models 4, 45-75 (1988) · Zbl 0651.60051
[21] Moran, P. A. P.: Notes on continuous stochastic phenomena. Biometrika 37, 17-23 (1950) · Zbl 0041.45702
[22] Moran, P. A. P.: A Gaussian Markovian process on a square lattice. J. appl. Probab. 10, 54-62 (1973) · Zbl 0258.60052
[23] Moran, P. A. P.: Necessary conditions for Markovian processes on a lattice. J. appl. Probab. 10, 605-612 (1973) · Zbl 0271.60043
[24] Tjøstheim, D.: Statistical spatial series modelling. Adv. appl. Probab. 10, 130-154 (1978) · Zbl 0799.62098
[25] Tjøstheim, D.: Statistical spatial series modelling, II. Some further results on unilateral lattice processes. Adv. appl. Probab. 15, 562-584 (1983) · Zbl 0525.62084
[26] Tory, E. M.; Pickard, D. K.: Unilateral Gaussian fields. Adv. appl. Probab. 24, 95-112 (1992) · Zbl 0753.60101
[27] Whittle, P.: On stationary processes in the plane. Biometrika 41, 434-449 (1954) · Zbl 0058.35601
[28] Woods, J. W.: Two-dimensional discrete Markovian fields. IEEE trans. Inform. theory 18, 232-240 (1972) · Zbl 0235.60063