Klein, Olaf; Philip, Peter Transient conductive-radiative heat transfer: discrete existence and uniqueness for a finite volume scheme. (English) Zbl 1070.65075 Math. Models Methods Appl. Sci. 15, No. 2, 227-258 (2005). The paper deals with the analysis of a finite volume discretization of transient heat equations coupled by nonlocal operators modelling diffuse-gray radiation between surfaces of cavities. Reviewer: Emil Minchev (Tokyo) Cited in 8 Documents MSC: 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 35K05 Heat equation 35K55 Nonlinear parabolic equations 80A20 Heat and mass transfer, heat flow (MSC2010) 45K05 Integro-partial differential equations 65R20 Numerical methods for integral equations 80M20 Finite difference methods applied to problems in thermodynamics and heat transfer Keywords:partial integro-differential equations; finite volume method; nonlinear parabolic equations; maximum principle; heat equations Software:pdelib PDF BibTeX XML Cite \textit{O. Klein} and \textit{P. Philip}, Math. Models Methods Appl. Sci. 15, No. 2, 227--258 (2005; Zbl 1070.65075) Full Text: DOI References: [1] DOI: 10.1017/CBO9780511624100 [2] DOI: 10.1137/S1064827596302965 · Zbl 0918.65093 [3] DOI: 10.1137/S1064827597322756 · Zbl 0932.65145 [4] Collatz L., Funktionalanalysis und Numerische Mathematik (1968) [5] DOI: 10.1016/0017-9310(90)90218-J · Zbl 0708.76126 [6] R. Eymard, T. Gallouët and R. Herbin, Handbook of Numerical Analysis 7, eds. P. G. Ciarlet and J. L. Lions (Elsevier, North-Holland, 2000) pp. 713–1020. [7] DOI: 10.1142/S0218202503002441 · Zbl 1047.85001 [8] DOI: 10.1016/S0168-9274(00)00039-8 · Zbl 0978.65081 [9] DOI: 10.1016/S0022-0248(02)01903-6 [10] DOI: 10.1016/S0022-0248(00)01009-5 [11] Laitinen M., Quart. Appl. Math. 59 pp 737– · Zbl 1290.35270 [12] López-Pouso Ó., Adv. Math. Sci. Appl. 10 pp 757– [13] Modest M. F., McGraw-Hill Series in Mechanical Engineering, in: Radiative Heat Transfer (1993) [14] DOI: 10.1142/S0218202501000854 · Zbl 1010.80014 [15] Pons M., Mater. Sci. Engrg. 61 pp 18– [16] DOI: 10.1016/j.future.2003.07.011 [17] DOI: 10.1023/A:1022326604210 · Zbl 0957.65016 [18] Sparrow E. M., Radiation Heat Transfer (1978) [19] Tiihonen T., Eur. J. App. Math. 8 pp 403– This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.