zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An analytical numerical method for solving the Korteweg-de Vries equation. (English) Zbl 1070.65077
Summary: An analytical numerical method is applied to the one-dimensional Korteweg-de Vries equation with a variant of boundary and initial conditions to obtain its numerical solutions at small times. Two test problem with known exact solutions are studied to demonstrate the accuracy of the present method. The obtained results are compared with the exact solution of each problem and are found to be in good agreement with each other. The numerical scheme is also compared with earlier work and shown to be accurate and efficient.

65M06Finite difference methods (IVP of PDE)
35Q53KdV-like (Korteweg-de Vries) equations
Full Text: DOI
[1] Korteweg, D. J.; De Vries, G.: On the change of form long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. mag. 36, 422-443 (1985) · Zbl 26.0881.02
[2] Debnath, L.: Nonlinear water partial differential equations for scientists and engineers. (1998)
[3] Drazin, P. G.; Johnson, R. S.: Solitons: an introduction. (1989) · Zbl 0661.35001
[4] Bona, J.; Smith, R.: Existence of solutions to the Korteweg-de Vries initial value problem. Lecture notes in applied mathematics 15 (1974) · Zbl 0294.35014
[5] Zabusky, N. J.: A synergetic approach to problem of nonlinear dispersive wave propagation and interaction. Proc. symp. Nonlinear partial differential equations, 223-258 (1967) · Zbl 0183.18104
[6] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M.: Korteweg-de Vries and generalizations. VI. methods for exact solution. Commun. pure appl. Math. 27, 97-133 (1974) · Zbl 0291.35012
[7] Fornberg, B.; Whitham, G. B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. trans. Roy. soc. 289, 373-404 (1978) · Zbl 0384.65049
[8] Vliengenhart, A. C.: On finite difference methods for the Korteweg-de Vries equation. J. engrg. Math. 5, 137-155 (1971) · Zbl 0221.76003
[9] Goda, K.: On stability of some finite difference schemes for the Korteweg-de Vries equation 3. Phys. soc. Jpn. 39, 229-236 (1975)
[10] Greig, L. S.; Morris, J. L. L.: A hopscotch method for the Korteweg-de Vries equation. J. comput. Phys. 20, 64-80 (1976) · Zbl 0382.65043
[11] Alexander, M. E.; Morris, J. L. L.: Galerkin methods for some model equations for nonlinear dispersive waves. J. comput. Phys. 30, 428-451 (1979) · Zbl 0407.76014
[12] Serna, J. M. S.; Christie, I.: Petrov Galerkin methods for nonlinear dispersive waves. J. comp. 39, 94-102 (1981) · Zbl 0451.65086
[13] Schoomie, S. W.: Spline Petrov-Galerkin methods for the numerical solution of the Korteweg-de Vries equation. IMA J. Numer. anal. 2, 95-109 (1982) · Zbl 0488.65054
[14] L.R.T. Gardner, A.H.A. Ali, A numerical solutions for the Korteweg-de Vries equation using Galerkins method with Hermite polynomial shape functions, in: Proceedings of the International Conference on modelling and simulations, vol. 1C, Istanbul, 1988, pp. 81-93
[15] Arafa, A. R. A.: Analytical numerical method for solving nonlinear partial differential equations. Appl. math. Lett. 9, 115-122 (1996) · Zbl 0864.65061
[16] Taha, T.; Ablowitz, M. J.: Analytical and numerical aspect of certain nonlinear evolution equations. III. numerical, Korteweg-de Vries equation. J. comput. Phys. 55, 231-253 (1984) · Zbl 0541.65083
[17] Gardner, L. R. T.; Gardner, G. A.; Ali, A. H. A.: Simulations of solitons using quadratic spline finite elements. Comput. methods appl. Mech. engrg. 92, 231-243 (1991) · Zbl 0825.76417
[18] Abbott, M. B.; Basco, D. R.: Computational fluid dynamics--an introduction for engineers. (1989) · Zbl 0743.76001
[19] Kutluay, S.; Bahadır, A. R.; Özdeş, A.: A small time solutions for the Korteweg-de Vries equation. Appl. math. Comput. 107, 203-210 (2000) · Zbl 1032.35157