Bernardi, Christine; Süli, Endre Time and space adaptivity for the second-order wave equation. (English) Zbl 1070.65083 Math. Models Methods Appl. Sci. 15, No. 2, 199-225 (2005). The paper deals with an a posteriori error analysis of fully discrete approximations to the initial-boundary value problem for the wave equation \(u_{tt} - \Delta u = 0\) in a bounded connected open domain in \(\mathbb{R}^d\), \(d \leq 3\). The authors show that the adaptation of the time steps can be combined with the spatial mesh adaptivity in an optimal way. Reviewer: Emil Minchev (Tokyo) Cited in 1 ReviewCited in 27 Documents MSC: 65M15 Error bounds for initial value and initial-boundary value problems involving PDEs 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 35L05 Wave equation Keywords:wave equation; backward Euler scheme; finite elements × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Ainsworth, M.; Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis, 2000, J. Wiley & Sons · Zbl 1008.65076 [2] Adjerid, S., Comput. Meth. Appl. Mech. Engrg.191, 4699 (2002). [3] Babuška, I.; Strouboulis, T., The Finite Element Method and Its Reliability, 2001, Oxford Univ. Press · Zbl 0995.65501 [4] Bangerth, W., Mathematical and Numerical Aspects of Wave Propagation, ed. (SIAM, 2000) pp. 725-729. · Zbl 0991.74065 [5] Bangerth, W.Rannacher, R., East-West J. Numer. Math.7, 263 (1999). · Zbl 0948.65098 [6] Bangerth, W.Rannacher, R., J. Comput. Acoust.9, 575 (2001). · Zbl 1360.76122 [7] A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of a nonlinear parabolic equation, to appear in Math. Comput. [8] Bernardi, C.; Maday, Y.; Rapetti, F., Discrétisations variationnelles de problèmes aux limites elliptiques, 45, 2004, Springer · Zbl 1063.65119 [9] Bieterman, M.Babuška, I., Numer. Math.40, 339 (1982). · Zbl 0534.65072 [10] Bieterman, M.Babuška, I., Numer. Math.40, 373 (1982). · Zbl 0534.65073 [11] Clément, P., R.A.I.R.O. Anal. Numér.9, 77 (1975). [12] Eriksson, K.Johnson, C., SIAM J. Numer. Anal.28, 43 (1991). · Zbl 0732.65093 [13] Eriksson, K.Johnson, C., SIAM J. Numer. Anal.32, 1729 (1995). · Zbl 0835.65116 [14] Frey, P. J.; George, P.-L., Maillages, applications aux éléments finis, 1999, Hermès [15] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations. I. Nonstiff Problems, 8, 1993, Springer-Verlag · Zbl 0789.65048 [16] Johnson, C.Nie, Y.-Y.Thomée, V., SIAM J. Numer. Anal.27, 277 (1990). [17] Lions, J.-L.; Magenes, E., Problèmes aux Limites non homogènes et applications, 1968, Dunod · Zbl 0165.10801 [18] Süli, E., A posteriori error analysis and global error control for adaptive finite volume approximations of hyperbolic problems, 344 (Longman, 1996) pp. 169-190. · Zbl 0847.65069 [19] Süli, E., An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, 5, eds. Kröner, D.Ohlberger, M.Rohde, C. (Springer-Verlag, 1998) pp. 123-194. [20] Verfürth, R., A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, 1996, Wiley & Teubner · Zbl 0853.65108 [21] Verfürth, R., Revue Européenne des Éléments Finis9, 377 (2000). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.