×

zbMATH — the first resource for mathematics

A three-dimensional finite element method for biological active soft tissue. Formulation in cylindrical polar coordinates. (English) Zbl 1070.74045
Summary: A hyperelastic constitutive law, for use in anatomically accurate finite element (FE) models of living structures, is suggested for passive and active mechanical properties of incompressible biological tissues. This law considers the passive and active states as the same hyperelastic continuum medium, and uses an activation function in order to describe the whole contraction phase. The variational and FE formulations are also presented, and the FE code has been validated and applied to describe the biomechanical behavior of a thick-walled anisotropic cylinder under different active loading conditions.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74L15 Biomechanical solid mechanics
92-08 Computational methods for problems pertaining to biology
92C10 Biomechanics
Software:
DCUHRE; minpack
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] W.M. Bayliss , On the local reaction of the arterial wall to changes of internal pressure . J. Physiol. London 28 ( 1902 ) 220 - 231 .
[2] J. Berntsen , T.O. Espelid and A. Genz , Algorithm 698: DCUHRE: An adaptive multidimensional integration routine for a vector of integrals . ACM Trans. Math. Softw. 17 ( 1991 ) 452 - 456 . Zbl 0900.65053 · Zbl 0900.65053 · doi:10.1145/210232.210234 · www.acm.org
[3] P.H.M. Bovendeerd , T. Arts , J.M. Huyghe , D.H. van Campen and R.S. Reneman , Dependance of local left ventricular wall mechanics on myocardial fiber orientation: a model study . J. Biomech. 25 ( 1992 ) 1129 - 1140 .
[4] P.G. Ciarlet , The finite element method for elliptic problems , Vol. 4 of Studies in Mathematics and its Applications. North-Holland, Amsterdam-New York ( 1980 ). MR 608971 | Zbl 0511.65078 · Zbl 0511.65078
[5] K.D. Costa , P.J. Hunter , J.S. Wayne , L.K. Waldman , J.M. Guccione and A.D. McCulloch , A three-dimensional finite element method for large elastic deformations of ventricular myocardium: Part I . Cylindrical and spherical polar coordinates. ASME J. Biomech. Eng. 118 ( 1996 ) 452 - 463 .
[6] R. Glowinski and P. LeTallec , Augmented lagrangian and operator-splitting methods in nonlinear mechanics . SIAM, Philadelphia, PA ( 1989 ). MR 1060954 | Zbl 0698.73001 · Zbl 0698.73001
[7] D.H.S. Lin and F.C.P. Yin , A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus . J. Biomech. Eng. 120 ( 1998 ) 504 - 517 .
[8] L.E. Malvern , Introduction to the mechanics of a continuous medium . Prentice-Hall ( 1969 ). · Zbl 0181.53303
[9] A.D. McCulloch , L.K. Waldman , J. Rogers and J. Guccione , Large scale finite element analysis of the beating heart . Crit. Rev. Biomed. Eng. 20 ( 1992 ) 427 - 449 .
[10] J.J. Morge , B.S. Garbow and K.E. Hillstrom , User Guide for MINPACK-1 . Technical Report ANL- 80 - 74 , Argonne National Laboratory (March 1980).
[11] J.T. Oden , Finite elements of nonlinear continua . McGraw-Hill, New York ( 1972 ). Zbl 0235.73038 · Zbl 0235.73038
[12] J. Ohayon and R.S. Chadwick , Effects of collagen microstructure on the mechanics of the left ventricle . Biophys. J. 54 ( 1988 ) 1077 - 1088 .
[13] M.J.D. Powell , A hybrid method for nonlinear equations , in Numerical methods for nonlinear algebraic equations, P. Rabinowitz Ed. Gordon and Breach, New York ( 1970 ) 87 - 114 . Zbl 0277.65028 · Zbl 0277.65028
[14] A. Quarteroni and A. Valli , Numerical approximation of partial differential equations , Vol. 23 of Springer Series in Computational Mathematics. Springer Verlag, Berlin ( 1994 ). MR 1299729 | Zbl 0803.65088 · Zbl 0803.65088
[15] G.M. Rubanyi , Mechanoreception by the vascular wall . Futura Publishing Company, Inc. ( 1993 ).
[16] L.A. Taber , On a nonlinear theory for muscle shells: Part II . Application to the beating left ventricle. J. Biomech. Eng. 113 ( 1991 ) 63 - 71 .
[17] P. Teppaz , J. Ohayon and R. Herbin , Interaction fluide-structure active : écoulement artériel . C.R. Acad. Sci. Paris 324 ( 1997 ) 37 - 45 . Zbl 0873.76099 · Zbl 0873.76099 · doi:10.1016/S1251-8069(99)80005-0
[18] T.P. Usyk , Omens J.H. and A.D. McCulloch , Regional septal dysfunction in a three-dimensional computational model of focal myofiber dissaray . Am. J. Physiol. Heart Circ. Physiol. 281 ( 2001 ) 506 - 514 .
[19] J. Zhang and C. Xu , A class of indefinite dogleg path mehods for unconstrained minimization . SIAM J. Optim. 9 ( 1999 ) 646 - 667 . Zbl 0953.90053 · Zbl 0953.90053 · doi:10.1137/S105262349627523X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.