×

Loss of regularity for super critical wave equations. (Perte de régularité pour les équations d’ondes sur-critiques.) (French. English summary) Zbl 1071.35020

Summary: We prove that the local Cauchy problem for the supercritical wave equation in \(\mathbb{R}^d\), \(\square u+ u^p= 0\), with \(d\geq 3\), \(p> 3\) and \(p> (d+ 2)/(d- 2)\), is ill-posed in \(H^\sigma\) for every \(\sigma\in ]1,\sigma_c[\), where \(\sigma_c= d/2- 2/(p- 1)\) is the critical exponent.

MSC:

35B33 Critical exponents in context of PDEs
35L15 Initial value problems for second-order hyperbolic equations
35L70 Second-order nonlinear hyperbolic equations
35R25 Ill-posed problems for PDEs
Full Text: DOI

References:

[1] Brenner (P.) & von Wahl (W.) -Global classical solutions of non-linear wave equations, Math. Z., t. 176 (1981), pp. 87-121. · Zbl 0457.35059
[2] Ginibre (J.) & Velo (G.) -The global Cauchy problem for the non linear Klein-Gordon equation, Math.Z., t. 189 (1985), pp. 487-505. · Zbl 0549.35108
[3] Hochstadt (H.) -On the Determination of a Hill’s Equation from its Spectrum, Arch. Rat. Mech. Anal., t. 19 (1965), pp. 353-362. · Zbl 0128.31201
[4] Jörgens (K.) -Das Anfangswertproblem in Grossen fur eine Klasse nicht-linearer Wellingleichungen, Math. Z., t. 77 (1961), pp. 295-308. · Zbl 0111.09105
[5] Lebeau (G.) -Non linear optic and supercritical wave equation, Bull. Soc. Math. Liège, t. 70 (2001), pp. 267-306. · Zbl 1034.35137
[6] Lions (J.-L.) -Quelques méthodes de résolution des problèmes aux limites non-linéaires, Dunod Gauthier-Villars, Paris, 1969. · Zbl 0189.40603
[7] Segal (I.E) -The Global Cauchy Problem for a Relativistic Scalar Field with Power Interaction, Bull. Soc. Math. France, t. 91 (1963), pp. 129-135. · Zbl 0178.45403
[8] Shatah (J.) & Struwe (M.) -Well-Posedness in the Energy Space for Semilinear Wave Equation with Critical Growth, I.M.R.N., t. 7 (1994), pp. 303-309. · Zbl 0830.35086
[9] Strauss (W.) -Nonlinear invariant wave equations, in Invariant wave equations (Proc. “Ettore Majorana” Internat. School of Math. Phys., Erice, 1977), Lecture Notes in Phys., vol. 73, Springer, 1978, pp. 197-249.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.