# zbMATH — the first resource for mathematics

The Dirichlet problem for the minimal surface system in arbitrary dimensions and codimensions. (English) Zbl 1071.35050
Author’s abstract: Let $$\Omega$$ be a bounded $$C^2$$ domain in $$\mathbb R^n$$ and $$\Phi: \partial\Omega\rightarrow \mathbb R^m$$ be a continuous map. The Dirichlet problem for the minimal surface system asks whether there exists a Lipschitz map $$f:\Omega \rightarrow \mathbb R^m$$ with $$f| _{\partial\Omega} = \Phi$$ and with the graph of $$f$$ a minimal submanifold in $$\mathbb R^{n+m}.$$ For $$m=1,$$ the Dirichlet problem was solved more than 30 years ago by H. Jenkins and J. Serrin [J. Reine Angew. Math. 229, 170–187 (1968; Zbl 0159.40204)] for any mean convex domains and the solutions are all smooth.
This paper considers the Dirichlet problem for convex domains in arbitrary codimention $$m.$$ We prove that if $$\psi:\overline\Omega\rightarrow \mathbb R^m$$ satisfies $$8n\delta \sup_{\Omega}| D^2\psi| +\sqrt 2 \sup_{\partial\Omega}| D\psi| <1,$$ then the Dirichlet problem for $$\psi| _{\partial\Omega}$$ is solvable in smooth maps. Here $$\delta$$ is the diameter of $$\Omega.$$ Such a condition is necessary in view of an example of H. B. Lawson and R. Osserman [Acta Math. 139, 1–17 (1977; Zbl 0376.49016)]. In order to prove this result, we study the associated parabolic system and solve the Cauchy-Dirichlet problem with $$\psi$$ as initial data.

##### MSC:
 35J60 Nonlinear elliptic equations 49Q05 Minimal surfaces and optimization 35K55 Nonlinear parabolic equations
##### Keywords:
Dirichlet problem; minimal surface
##### Citations:
Zbl 0159.40204; Zbl 0376.49016
Full Text:
##### References:
 [1] Allard, Ann of Math (2) 95 pp 417– (1972) [2] Allard, Ann of Math (2) 101 pp 418– (1975) [3] Caffarelli, Acta Math 155 pp 261– (1985) [4] De Giorgi, Mem Accad Sci Torino Cl Sci Fis Mat Nat (3) 3 pp 25– (1957) [5] Ecker, Invent Math 105 pp 547– (1991) [6] Fischer-Colbrie, Acta Math 145 pp 29– (1980) [7] ; Elliptic partial differential equations of second order. Second edition. Grundlehren der Mathematischen Wissenschaften, 224. Springer, Berlin, 1983. · Zbl 0361.35003 [8] Minimal surfaces and functions of bounded variation. Monographs in Mathematics, 80. BirkhĂ¤user, Basel, 1984. · Zbl 0545.49018 [9] Hamilton, J Differential Geom 17 pp 255– (1982) [10] Hamilton, J Differential Geom 24 pp 153– (1986) [11] Huisken, J Differential Equations 77 pp 369– (1989) [12] Jenkins, J Reine Angew Math 229 pp 170– (1968) · Zbl 0159.40204 [13] Lawson, Acta Math 139 pp 1– (1977) [14] Lieberman, Ann Scuola Norm Sup Pisa Cl Sci (4) 13 pp 347– (1986) [15] Second order parabolic differential equations. World Scientific, River Edge, N.J., 1996. · Zbl 0884.35001 [16] Moser, Comm Pure Appl Math 13 pp 457– (1960) [17] ; Maximum principles in differential equations. Prentice-Hall, Englewood Cliffs, N.J., 1967. [18] On the problem of Plateau. Subharmonic functions. Reprint. Springer, New York?Heidelberg, 1971. · Zbl 0211.13803 [19] Smale, J Reine Angew Math 440 pp 1– (1993) · Zbl 0776.58038 [20] Wang, J Differential Geom 57 pp 301– (2001) [21] Wang, Invent Math 148 pp 525– (2002) [22] Wang, Trans Amer Math Soc 355 pp 265– (2003) [23] A local regularity theorem for classical mean curvature flow. Preprint, 2000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.