zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a four-dimensional chaotic system. (English) Zbl 1071.37025
Summary: This paper reports a new four-dimensional continuous autonomous chaotic system, in which each equation in the system contains a 3-term cross product. Basic properties of the system are analyzed by means of Lyapunov exponents and bifurcation diagrams.

37D45Strange attractors, chaotic dynamics
34C28Complex behavior, chaotic systems (ODE)
Full Text: DOI
[1] Sparrow, C.: The Lorenz equationsbifurcations chaos and strange attractors. (1982) · Zbl 0504.58001
[2] Rösslor, O. E.: An equation for continuous chaos. Phys. lett. A 57, 397-398 (1976)
[3] Chen, G.: Controlling chaos and bifurcations in engineering systems. (1999)
[4] Chen, G.; Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat. chaos 9, 1465-1466 (1999) · Zbl 0962.37013
[5] Ueta, T.; Chen, G.: Bifurcation analysis of Chen’s attractor. Int. J. Bifurcat. chaos 10, 1917-1931 (2000) · Zbl 1090.37531
[6] Lü, J. H.; Chen, G.: A new chaotic attractor coined. Int. J. Bifurcat. chaos 12, 659-661 (2002) · Zbl 1063.34510
[7] Zhou, T. S.; Chen, G.; Tang, Y.: Chen’s attractor exists. Int. J. Bifurcat. chaos 14, 3167-3177 (2004) · Zbl 1129.37326
[8] Cělikovský, S.; Vaněček, A.: Bilinear systems and chaos. Kybernetika 30, 403-424 (1994) · Zbl 0823.93026
[9] Lü, J. H.; Chen, G.; Cheng, D.; Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurcat. chaos 12, No. 12, 2917-2926 (2002) · Zbl 1043.37026
[10] Zhou, T. S.; Chen, G.; Tang, Y.: Complex dynamical behaviors of the chaotic Chen’s system. Int. J. Bifurcat. chaos 13, No. 9, 2561-2574 (2003) · Zbl 1046.37018
[11] G. Chen, Chaotification via feedback: the discrete case, in: G. Chen, X. Yu (Eds.), Chaos Control, Springer, New York, 2003, pp. 159 -- 178. · Zbl 02051015
[12] X. Wang, Generating chaos in continuous-time systems, in: G. Chen, X. Yu (Eds.), Chaos Control, Springer, New York, 2003, pp. 179 -- 204. · Zbl 1043.93027