zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Cancer self remission and tumor stability -- a stochastic approach. (English) Zbl 1071.92017
Summary: The paper aims to express the spontaneous regression and progression of a malignant tumor system as a prey-predator like system. The model is a three dimensional deterministic system, consisting of tumor cells, hunting predator cells and resting predator cells. Local stability analysis is performed along with numerical simulations to support the analytical findings. Moreover, the deterministic model is extended to a stochastic one allowing random fluctuations around the positive interior equilibrium. The stochastic stability properties of the model are investigated both analytically and numerically. The thresholds obtained from our study may be helpful to control the malignant tumor growth.

MSC:
92C50Medical applications of mathematical biology
34F05ODE with randomness
93E15Stochastic stability
WorldCat.org
Full Text: DOI
References:
[1] Abraham, R.: On morphodynamics. (1994)
[2] Afanasev, V. N.; Kolmanowskii, V. B.; Nosov, V. R.: Mathematical theory of control systems design. (1996)
[3] Belair, J.; Glass, L.; Heiden, U.; Milton, J.: Dynamical disease: mathematical analysis. (1995)
[4] Beretta, E.; Kolmanowskii, V.; Shaikhet, L.: Stability of epidemic model with time delays influenced by stochastic perturbations. Math. comput. Simul. 45, 269 (1998) · Zbl 1017.92504
[5] P.M. Burrage, Runge-Kutta methods for stochastic differential equations, Ph.D. thesis, University of Queensland, Brisbane, Australia, 1999. · Zbl 1194.65023
[6] Byrne, H. M.; Cox, S. M.; Kelly, C. E.: Macrophage-tumor interactions: in vivo dynamics. Discr. cont. Dynam. syst. Ser. B 4, 81 (2004) · Zbl 1055.34089
[7] Carletti, M.: On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment. Math. biosci. 175, 117 (2002) · Zbl 0987.92027
[8] De Boer, R. J.; Hogeweg, P.; Dullens, H. F.; De Weger, R. A.; Den Otter, W.: Macrophage T-lymphocyte interactions in the anti-tumor immune response: a mathematical model. J. immunol. 134, No. 4, 2748 (1985)
[9] De Boer, R. J.; Hogeweg, P.: Interactions between macrophages and T-lymphocytes: tumor sneaking through intrinsic to helper T cell dynamics. J. theor. Biol. 120, No. 3, 331 (1986)
[10] Everson, T.; Cole, W.: Spontaneous regression of cancer. (1966)
[11] Folkman, J.; Boehm, T.; O’reilly, M.: Anti-angiogenic therapy of cancer. Nature 390, 404 (1997)
[12] Gikhman, I. I.; Skorokhod, A. V.: The theory of stochastic processes I. (1974) · Zbl 0132.37902
[13] Gikhman, I. I.; Skorokhod, A. V.: The theory of stochastic processes II. (1975) · Zbl 0348.60042
[14] Gikhman, I. I.; Skorokhod, A. V.: The theory of stochastic processes III. (1979) · Zbl 0411.93029
[15] D.J. Higham, X. Mao, A.M. Stuart, Strong convergence of numerical methods for nonlinear stochastic differential equations, Mathematics Research Report, 13, University of Strathclyde, Glasgow, 2001.
[16] Horsthemke, W.; Lefever, R.: Noise induced transitions: applications to physics, chemistry, biology. (1984) · Zbl 0529.60085
[17] Kloeden, P. E.; Platen, E.: Numerical solution of stochastic differential equations. (1995) · Zbl 0858.65148
[18] Majumder, D. D.: Cybernetics and general system theory - a unitary science. Kybernetics 8, 7 (1979)
[19] Majumder, D. D.; Roy, P.: Cancer self remission and tumor instability - a cybernetic analysis: towards a fresh paradigm for cancer treatment. Cybernetics 29, 896 (2000)
[20] Mohler, R.; Brum, C.; Gaudom, A.: A systems approach to immunology. Proc. IEEE 68, 964 (1980)
[21] O’regan, B.; Hirschberg, C.: Spontaneous remission. (1992)
[22] Prigogine, I.: Nobel lecture - chemistry. (1977)
[23] I. Prigogine, The Wiener lecture, in: The 11th International Conference on Cybernetics and Systems, World Organization of Cybernetics and Systems, Paris, 1999. · Zbl 1112.81303
[24] Rohdenburg, G.: Fluctuations in malignant tumors with spontaneous recession. J. cancer res. 3, 193 (1918)
[25] P. Roy, Cancer and Psychosis: A Unified Approach by System Theory, Research Project, Rolex Foundation, Geneva, 1980.
[26] Roy, P.; Sen, P. K.: Enigma of spontaneous regression and prolonged arrest: therapeutic replication. Proceedings of the XVI international cancer congress (1994)
[27] Roy, P.; Sen, P. K.: A dynamical analysis of spontaneous cancer regression. J. investigat. Med. 44, No. 3, 333 (1996)
[28] Roy, P.; Biswas, J.: Biological parallelism in spontaneous remission of tumor and neurogranuloma. Tumor biol., No. October (1996)
[29] Roy, P.; Majumder, D. D.; Biswas, J.: Spontaneous cancer regression: implication for fluctuation. Indian J. Phys. 73B, No. 5, 777 (1999)
[30] Sarkar, R.; Chattopadhyay, J.; Bairagi, N.: Effects of environmental fluctuation on an eco-epidemiological model on salton sea. Environmetrics 12, 289 (2001)
[31] Sarkar, R. R.; Chattopadhyay, J.: Occurrence of planktonic blooms under environmental fluctuations and its possible control mechanism - mathematical models and experimental observations. J. theor. Biol. 224, 501 (2003)
[32] Sarkar, R. R.; Chattopadhyay, J.: The role of environmental stochasticity in a toxic phytoplankton - non-toxic phytoplankton - zooplankton system. Environmetrics 14, 775 (2003)
[33] Shapot, V.: Biochemical aspects of tumor growth. (1990)