Kar, Tapan Kumar Modelling and analysis of a harvested prey–predator system incorporating a prey refuge. (English) Zbl 1071.92041 J. Comput. Appl. Math. 185, No. 1, 19-33 (2006). Summary: The present paper deals with a prey-predator model incorporating a prey-refuge and independent harvesting in either species. Our study shows that, using the harvesting efforts as controls, it is possible to break the cyclic behaviour of the system and drive it to a required state. The possibility of existence of bionomic equilibria has been considered. The problem of optimal harvest policies is then solved by using Pontryagin’s maximal principle. Cited in 63 Documents MSC: 92D40 Ecology 49N90 Applications of optimal control and differential games 34C60 Qualitative investigation and simulation of ordinary differential equation models 34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations Keywords:Prey-refuge; Limit cycles; Bionomic equilibrium; Optimal harvesting PDF BibTeX XML Cite \textit{T. K. Kar}, J. Comput. Appl. Math. 185, No. 1, 19--33 (2006; Zbl 1071.92041) Full Text: DOI OpenURL References: [1] Birkoff, G.; Rota, G.C., Ordinary differential equations, (1982), Ginn Boston [2] Brauer, F.; Soudack, A.C., Stability regions and transition phenomena for harvested predator – prey systems, J. math. biol., 7, 319-337, (1979) · Zbl 0397.92019 [3] Brauer, F.; Soudack, A.C., Stability regions in predator – prey systems with constant prey harvesting, J. math. biol., 8, 55-71, (1979) · Zbl 0406.92020 [4] Brauer, F.; Soudack, A.C., Constant-rate stocking of predator – prey systems, J. math. biol., 11, 1-14, (1981) · Zbl 0448.92020 [5] Brauer, F.; Soudack, A.C., Coexistence properties of some predator – prey systems under constant rate harvesting, J. math. biol., 12, 101-114, (1981) · Zbl 0482.92015 [6] Chen, K.S., Uniqueness of a limit cycle of a predator – prey system, SIAM J. math. anal., 12, 541-548, (1981) · Zbl 0471.92021 [7] Clark, C.W., Mathematical bioeconomics, the optimal management of renewable resources, (1990), Wiley New York · Zbl 0712.90018 [8] Collings, J.B., Bifurcation and stability analysis of a temperature dependent mite predator – prey interaction model incorporating a prey refuge, Bull. math. biol., 57, 1, 63-76, (1995) · Zbl 0810.92024 [9] Dai, G.; Tang, M., Coexistence region and global dynamics of a harvested predator – prey system, SIAM J. appl. math., 58, 1, 193-210, (1998) · Zbl 0916.34034 [10] Fan, M.; Wang, K.; Zhang, Y.; Zhang, S.; Liu, H., Study on harvested population with diffusional migration, J. systems sci. complex, 14, 2, 139-148, (2000) · Zbl 0976.92023 [11] Hassel, M.P., The dynamics of anthropoid predator – prey systems, (1978), Princeton University Press Princeton, NJ [12] Hofbauer, J.; So, J.W.H., Multiple limit cycles for predator – prey models, Math. biosci., 99, 71-75, (1990) · Zbl 0701.92015 [13] Holling, C.S., The functional response of predators to prey density and its role in mimicry and population regulation, Mem. entomol. soc. can., 45, 3-60, (1965) [14] Kar, T.K.; Chaudhuri, K.S., On non-selective harvesting of a multispecies fishery, Internat. J. math. educ. sci. technol., 33, 4, 543-556, (2002) [15] Kuang, Y.; Freedman, H.I., Uniqueness of limit cycles in Gauss-type models of predator – prey systems, Math. biosci., 88, 67-84, (1988) · Zbl 0642.92016 [16] Leung, A., Optimal harvesting co-efficient control of steady state prey – predator diffusive volterra – lotka systems, Appl. math. optim., 31, 219, (1995) · Zbl 0820.49011 [17] Smith, J.M., Models in ecology, (1974), Cambridge University Press Cambridge · Zbl 0312.92001 [18] Pontryagin, L.S.; Boltyonskii, V.G.; Gamkrelidre, R.V.; Mishchenko, E.F., The mathematical theory of optimal processes, (1962), Wiley New York [19] Pradhan, T.; Chaudhuri, K.S., Bioeconomic modeling of selective harvesting in an inshore-offshore fishery, Differential equations and dynamic systems, 7, 3, 305-320, (1999) · Zbl 0973.92036 [20] Taylor, R.J., Predation, (1984), Chapman & Hall New York This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.