zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential stability of high-order bidirectional associative memory neural networks with time delays. (English) Zbl 1071.93048
A class of high-order bidirectional associative memory neural networks with time delays is studied. Exponential stability for such nets is proved by using the linear matrix inequality method and the Lyapunov functional method. The given examples confirm the obtained results.

93D30Scalar and vector Lyapunov functions
92B20General theory of neural networks (mathematical biology)
93D09Robust stability of control systems
15A39Linear inequalities of matrices
Full Text: DOI
[1] Hopfield, J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. natl. Acad. sci. USA, biophysics 81, 3088-3092 (1984)
[2] Chua, L. O.; Yang, L.: Cellular neural networks: theory. IEEE trans. Circuits syst. 35, No. 10, 1257-1272 (1988) · Zbl 0663.94022
[3] Marcus, C. M.; Westervelt, R. M.: Stability of analog neural networks with delay. Phys. rev. A 39, 347-359 (1989)
[4] Cohen, M.; Grossberg, S.: Absolute stability and global pattern formation and parallel memory storage by competitive neural networks. IEEE trans. Syst. man cybern. 13, No. 5, 815-826 (1983) · Zbl 0553.92009
[5] Den Driessche, P. Van; Zou, X.: Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. math. 58, 1878-1890 (1998) · Zbl 0917.34036
[6] Cao, J.; Tao, Q.: Estimation on domain of attraction and convergence rate of Hopfield continuous feedback neural networks. J. comput. Syst. sci. 62, 528-534 (2001) · Zbl 0987.68071
[7] Cao, J.: Global exponential stability of Hopfield neural networks. International journal of systems science 32, No. 2, 233-236 (2001) · Zbl 1011.93091
[8] Cao, J.; Wang, J.: Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays. Neural networks 17, 379-390 (2004) · Zbl 1074.68049
[9] Cao, J.; Wang, J.; Liao, X.: Novel stability criteria of delayed cellular neural networks. Int. J. Neural syst. 13, No. 5, 367-375 (2003)
[10] Abu-Mostafa, Y.; Jacques, J.: Information capacity of the Hopfield model. IEEE trans. Inform. theory 31, 461-464 (1985) · Zbl 0571.94030
[11] Mceliece, R.; Posner, E.; Rodemich, E.; Venkatesh, S.: The capacity of the Hopfield associative memory. IEEE trans. Inform. theory 33, 461-482 (1987) · Zbl 0631.94016
[12] Baldi, P.: Neural networks, orientations of the hypercube, and algebraic threshold functions. IEEE trans. Inform. theory 34, 523-530 (1988) · Zbl 0653.94027
[13] Personnaz, L.; Guyon, I.; Dreyfus, G.: High-order neural networks: information storage without errors. Europhys. lett. 4, No. 8, 863-867 (1987)
[14] Psaltis, D.; Park, C. H.; Hong, J.: Higher-order associative memories and their optical implementations. Neural networks 1, No. 2, 149-163 (1988)
[15] Simpson, P. K.: Higher-ordered and intraconnected bidirectional associative memories. IEEE trans. Syst. man cybern. 20, 637-653 (1990)
[16] Peretto, P.; Niez, J. J.: Long term memory storage capacity of multiconnected neural networks. Biol. cybern. 54, 53-63 (1986) · Zbl 0596.92013
[17] Ho, D. W. C.; Lam, J.; Xu, J.; Tam, H. K.: Neural computation for robust approximate pole assignment. Neurocomputing 25, 191-211 (1999) · Zbl 0941.68111
[18] Dembo, A.; Farotimi, O.; Kailath, T.: High-order absolutely stable neural networks. IEEE trans. Circuits syst. 38, No. 1, 57-65 (1991) · Zbl 0712.92002
[19] Kamp, Y.; Hasler, M.: Recursive neural networks for associative memory. (1990) · Zbl 0742.92006
[20] Kosmatopoulos, E. B.; Polycarpou, M. M.; Christodoulou, M. A.; Ioannou, P. A.: High-order neural network structures for identification on dynamical systems. IEEE trans. Neural networks 6, 422-431 (1995)
[21] Xu, B.; Liu, X.; Liao, X.: Global asymptotic stability of high-order Hopfield type neural networks with time delays. Comput. math. Appl. 45, 1729-1737 (2003) · Zbl 1045.37056
[22] Kosko, B.: Bidirectional associative memories. IEEE trans. Syst. man cybern. 18, No. 1, 49-60 (1988)
[23] Cao, J.; Wang, L.: Exponential stability and periodic oscillatory solution in BAM networks with delays. IEEE trans. Neural networks 13, No. 2, 457-463 (2002)
[24] Cao, J.: Global asymptotic stability of delayed bi-directional associative memory neural networks. Appl. math. Comput. 142, 333-339 (2003) · Zbl 1031.34074
[25] Cao, J.; Dong, M.: Exponential stability of delayed bidirectional associative memory networks. Appl. math. Comput. 135, 105-112 (2003) · Zbl 1030.34073
[26] Liao, X. F.; Yu, J. B.: Qualitative analysis of bi-directional associative memory with time delays. Int. J. Circuit theory appl. 26, No. 3, 219-229 (1998) · Zbl 0915.94012
[27] Mohamad, S.: Global exponential stability in continuous-time and discrete-time delay bidirectional neural networks. Physica D 159, 233-251 (2001) · Zbl 0984.92502
[28] Chen, A.; Cao, J.; Huang, L.: Exponential stability of BAM neural networks with transmission delays. Neurocomputing 57, 435-454 (2004)
[29] Tank, D.; Hopfield, J.: Simple neural optimization networks: an A/D converter, signal decision circuit and a linear programming circuit. IEEE trans. Circuits syst. 33, 533-541 (1986)
[30] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory. (1994) · Zbl 0816.93004