Spectral resolutions in Dedekind \(\sigma\)-complete \(\ell\)-groups. (English) Zbl 1072.06014

Summary: Using recent results on a generalized form of the Loomis-Sikorski theorem [A. Dvurečenskij, J. Aust. Math. Soc., Ser. A 68, 261–277 (2000; Zbl 0958.06006); D. Mundici, Adv. Appl. Math. 22, 227–248 (1999; Zbl 0926.06004)], it is shown that a unital Dedekind \(\sigma\)-complete \(\ell\)-group is a compatible Rickart comgroup in the sense of D. J. Foulis [Rep. Math. Phys. 54, 229–250 (2004)]. In particular, elements in unital Dedekind \(\sigma\)-complete \(\ell\)-groups and, consequently, elements in \(\sigma\)-MV-algebras, admit uniquely defined spectral resolutions similar to spectral resolutions of self-adjoint operators. A functional calculus and spectra of elements are considered in relation with the Loomis-Sikorski representation by functions.


06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
06D35 MV-algebras
Full Text: DOI


[1] Butnariu, D.; Klement, E., Triangular norm-based measures and their Markov kernel representation, J. Math. Anal. Appl., 162, 111-143 (1991) · Zbl 0751.60003
[2] Barbieri, G.; Weber, H., Measures on clans and on MV-algebras, (Pap, E., Handbook of Measure Theory, vol. II (2002), Elsevier Science BV: Elsevier Science BV Amsterdam), Chapter 22 · Zbl 1019.28009
[3] Chang, C. C., Algebraic analysis of many-valued logic, Trans. Amer. Math. Soc., 88, 467-490 (1957) · Zbl 0084.00704
[4] Dvurečenskij, A., Loomis-Sikorski theorem for \(σ\)-complete MV-algebras and \(ℓ\)-groups, J. Austral. Math. Soc. Ser. A, 68, 261-277 (2000) · Zbl 0958.06006
[5] Dvurečenskij, A.; Pulmannová, S., New Trends in Quantum Structures (2000), Kluwer Academic/Ister Science: Kluwer Academic/Ister Science Dordrecht/Bratislava · Zbl 0987.81005
[7] Foulis, D. J., Compressions on partially ordered Abelian groups, Proc. Amer. Math. Soc., 132, 3581-3587 (2004) · Zbl 1063.47003
[8] Foulis, D. J., Compressible groups, Math. Slovaca, 53, 433-455 (2003) · Zbl 1068.06018
[10] Foulis, D. J., Spectral resolutions in a Rickart comgroup, Rep. Math. Phys., 54, 229-250 (2004) · Zbl 1161.81310
[11] Goodearl, K. R., Partially Ordered Abelian Groups with Interpolation, Math. Surveys Monogr., vol. 20 (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 0589.06008
[12] Mundici, D., Interpretation of AF-C*-algebras in Lukasiewicz sentential calculus, J. Funct. Anal., 65, 15-63 (1986) · Zbl 0597.46059
[13] Mundici, D., Tensor product and the Loomis-Sikorski theorem for MV-algebras, Adv. Appl. Math., 22, 227-248 (1999) · Zbl 0926.06004
[15] Pták, P.; Pulmannová, S., Orthomodular Structures as Quantum Logics (1991), Kluwer Academic/VEDA: Kluwer Academic/VEDA Dordrecht/Bratislava · Zbl 0743.03039
[16] Varadarajan, V. S., Geometry of Quantum Theory (1985), Springer-Verlag: Springer-Verlag New York · Zbl 0581.46061
[17] Wright, J. D.M., Every monotone sigma-complete C*-algebra is the quotient of its Baire*-envelope by a two-sided ideal, J. London Math. Soc., 6, 210-221 (1973) · Zbl 0253.46121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.