×

Line-energy Ginzburg-Landau models: zero-energy states. (English) Zbl 1072.35051

The authors study the limits \(m\) of sequences \(\{m_\epsilon\}_{\epsilon\downarrow 0}\) such that \(\lim_{\epsilon\downarrow 0} E_\epsilon(m_\epsilon)=0\) (\`\` zero energy states\'\') for the energy functional \[ E_\epsilon(m) = \epsilon\int_\Omega |\nabla m|^2 + {1\over\epsilon} \int_\Omega (1-|m|^2)^2 + {1\over\epsilon}\int_{\mathbb{R}^2}|\nabla^{-1}\text{div}\,m|^2 \] where \(\Omega\subset\mathbb{R}^2\) and \(m:\Omega\rightarrow\mathbb{R}^2\) is assumed to be extended to be zero outside \(\Omega\). Such problems arise in various physical situations, such as smectic liquid crystals, soft ferromagnetic films and in the gradient theory of phase transitions. They have been studied by W. Jin and R. V. Kohn [J. Nonlinear Sci. 10, No. 3, 355–390 (2000; Zbl 0973.49009)], L. Ambrosio, C. De Lellis, and C. Mantegazza [Calc. Var. Partial Differ. Equ. 9, No. 4, 327–355 (1999; Zbl 0960.49013)] and A. DeSimone, R. V. Kohn, S. Müller and F. Otto [Proc. R. Soc. Edinb., Sect. A, Math. 131, No. 4, 833–844 (2001; Zbl 0986.49009]. A characteristic property of these problems is that as \(\epsilon\rightarrow 0\), minimizers converge to vector fields with line singularities.
The authors show that if \(\Omega=\mathbb{R}^2\), then \(m\) is either constant or a vortex, that is, \(m(x)=\pm(x-{\mathcal O})^\perp/|x-{\mathcal O}|\) for some \({\mathcal O}\in\mathbb{R}^2\) where \(\perp\) denotes counterclockwise rotation by \(\pi/2\).
They also show that within a class of domains \(\Omega\neq\mathbb{R}^2\) that permit the existence of zero energy states, either \(\Omega\) is a disc and \(m\) is a vortex, or \(\Omega\) is a strip and \(m\) is constant.
The proof is based on specific entropies which lead to a kinetic formulation, and on a careful analysis of the corresponding weak solutions by the method of characteristics.

MSC:

35B65 Smoothness and regularity of solutions to PDEs
35J60 Nonlinear elliptic equations
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] L. Ambrosio - C. De Lellis - C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327-355. Zbl0960.49013 MR1731470 · Zbl 0960.49013 · doi:10.1007/s005260050144
[2] P. Aviles - Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for grasient fields, Proc. Roy. Soc. Edinburgh 129A (1999), 1-17. Zbl0923.49008 MR1669225 · Zbl 0923.49008 · doi:10.1017/S0308210500027438
[3] F. Béthuel - H. Brézis - F. Hélein, “Ginzburg-Landau vortices”, Progress in Nonlinear Differential Equations and their Applications, Birkhauser, 1994. Zbl0802.35142 MR1269538 · Zbl 0802.35142
[4] M. Cessenat, Théorèmes de trace \(L^p\) pour les espaces de fonctions de la neutronique, C.R. Acad. Sci. Paris Sér. I 299 (1984), 834 and 300 (1985), 89. Zbl0568.46030 MR777741 · Zbl 0568.46030
[5] A. Desimone - R. V. Kohn - S. Müller - F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh 131 (2001), 833-844. Zbl0986.49009 MR1854999 · Zbl 0986.49009 · doi:10.1017/S030821050000113X
[6] A. Desimone - R. V. Kohn - S. Müller - F. Otto, Magnetic microstructures, a paradigm of multiscale problems, Proceedings of ICIAM, to appear. Zbl0991.82038 · Zbl 0991.82038
[7] H. Federer, “Geometric measure theory”, Springer-Verlag, 1969. Zbl0176.00801 MR257325 · Zbl 0176.00801
[8] R. Howard - A. Treibergs, A reverse isoperimetric inequality, stability and extremal theorems for plane curves with bounded curvature, Rocky Mountain J. Math. 25 (1995), n. 2, 635-684. Zbl0909.53002 MR1336555 · Zbl 0909.53002 · doi:10.1216/rmjm/1181072242
[9] P. E. Jabin - B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging, Comm. Pure Appl. Math. 54 (2001), 1096-1109. Zbl1124.35312 MR1835383 · Zbl 1124.35312 · doi:10.1002/cpa.3005
[10] W. Jin - R. V. Kohn, Singular perturbation and the energy of folds, J. Nonlinear Sci 10 (2000), 355-390. Zbl0973.49009 MR1752602 · Zbl 0973.49009 · doi:10.1007/s003329910014
[11] T. Rivière - S. Serfaty, Limiting domain wall energy in micromagnetism, Comm. Pure Appl. Math. 54 (2001), 294-338. Zbl1031.35142 MR1809740 · Zbl 1031.35142 · doi:10.1002/1097-0312(200103)54:3<294::AID-CPA2>3.0.CO;2-S
[12] T. Rivière - S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics, preprint (2001). Zbl1094.35125 MR1974456 · Zbl 1094.35125 · doi:10.1081/PDE-120019381
[13] S. Ukai, Solutions of the Boltzmann equation, In: “Pattern and waves”, North-Holland 1986. Zbl0633.76078 MR882376 · Zbl 0633.76078
[14] A. Vasseur, Strong traces for solutions to multidimensional scalar conservation laws, Arch. Rational Mech. Anal., to appear. Zbl0999.35018 MR1869441 · Zbl 0999.35018 · doi:10.1007/s002050100157
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.