zbMATH — the first resource for mathematics

The Navier-Stokes equations on \(\mathbb R^n\) with linearly growing initial data. (English) Zbl 1072.35144
Summary: Consider the equations of Navier-Stokes on \(\mathbb R^n\) with initial data \(U _0\) of the form \(U_0(x) = u_0(x) - Mx\), where \(M\) is an \(n \times n\) matrix with constant real entries and \(u_0 \in L^p_\sigma(\mathbb R^n)\). It is shown that under these assumptions the Navier-Stokes equations admit a unique local solution in \(L^p_\sigma(\mathbb R^n)\). Moreover, if \(\| e^{tM}\| \leq 1\) for all \(t \geq 0\), then this mild solution is even analytic in \(x\). This is surprising since the underlying semigroup of Ornstein-Uhlenbeck type is not analytic, in contrast to the Stokes semigroup.

35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
47H20 Semigroups of nonlinear operators
Full Text: DOI
[1] Amann, H.: On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech. 2, 16-98 (2000) · Zbl 0989.35107
[2] Arendt, W., Batty, Ch., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems. Birkhäuser, Basel, 2001 · Zbl 0978.34001
[3] Banin, A., Mahalov, A., Nicolaenko, B.: Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J. 48, 1133-1176 (1999) · Zbl 0932.35160
[4] Banin, A., Mahalov, A., Nicolaenko, B.: 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J. 50, 1-35 (2001) · Zbl 1013.35065
[5] Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations. To appear In: Handbook of Mathematical Fluid Dynamics, vol 3 S. Friedlander, D. Serre, (eds.), Elsevier, 2004 · Zbl 1222.35139
[6] Cannone, M., Meyer, Y.: Littlewood-Paley decomposition and Navier-Stokes equations. Methods and Applications in Analysis 2, 307-319 (1995) · Zbl 0842.35074
[7] Fabes, E.B., Jones, B.F., Riviere, N.M.: The initial value problem for the Navier-Stokes equations with data in Lp. Arch. Rational Mech. Anal. 45, 222-240 (1972) · Zbl 0254.35097
[8] Gallay, Th., Wayne, E.: Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on ?2. Arch. Rational Mech. Anal. 163, 209-258 (2002) · Zbl 1042.37058
[9] Giga, Y.: Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system. J. Differential Equations 62, 186-212 (1986) · Zbl 0577.35058
[10] Giga, Y., Inui, K., Matsui, S.: On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data. Quaderni di Matematica 4, 28-68 (1999) · Zbl 0961.35110
[11] Giga, Y., Kambe, T.: Large time behaviour of the vorticity of two-dimensional viscous flow and its application to vortex formation. Commun. Math. Phys. 117, 549-568 (1988) · Zbl 0661.76018
[12] Giga, Y., Matsui, S., Sawada, O.: Global existence of two-dimensional Navier-Stokes flow with nondecaying initial velocity. J. Math. Fluid Mech. 3, 302-315 (2001) · Zbl 0992.35066
[13] Giga, Y., Miyakawa, T.: Solutions in Lr of the Navier-Stokes initial value problem. Arch. Rational Mech. Anal. 89, 267-281 (1985) · Zbl 0587.35078
[14] Giga, Y., Miyakawa, T., Osada, H.: Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal. 104, 223-250 (1988) · Zbl 0666.76052
[15] Giga, Y., Sawada, O.: On regularizing-decay rate estimate for solutions to the Navier-Stokes initial value problem. Nonlinear Anal. and Appl. 2003, to appear · Zbl 1080.35072
[16] Hieber, M.: The Ornstein-Uhlenbeck semigroup on exterior domains. Preprint, 2004
[17] Hishida, T.: An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Arch. Rational Mech. Anal. 150, 307-348 (1999) · Zbl 0949.35106
[18] Hishida, T.: The Stokes operator with rotation effect in exterior domains. Analysis 19, 51-67 (1999) · Zbl 0938.35114
[19] Hishida, T.: L2 theory for the operator ?+ (k {\(\times\)} x) {\(\cdot\)} ? in exterior domains. Nihonkai Math J. 11, 103-135 (2000) · Zbl 1004.35056
[20] Kahane, C.: On the spatial analyticity of solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 33, 386-405 (1969) · Zbl 0186.16801
[21] Kato, J.: The uniqueness of nondecaying solutions for the Navier-Stokes equations. Arch. Rational Mech. Anal. 169, 159-175 (2003) · Zbl 1056.76022
[22] Kato, T.: Strong Lp-solutions of Navier-Stokes equations in ?n with applications to weak solutions. Math. Z. 187, 471-480 (1984) · Zbl 0545.35073
[23] Majda, A.: Vorticity and the mathematical theory of incompressible fluid flow. Commun. Pure Appl. Math. 34, 187-220 (1986) · Zbl 0595.76021
[24] Masuda, K.: Weak solutions of Navier-Stokes equations. Tohoku Math. J. 36, 623-646 (1984) · Zbl 0568.35077
[25] Metafune, G., Pallara, D., Priola, E.: Spectrum of Ornstein-Uhlenbeck operators in Lp spaces with respect to invariant measures. J. Funct. Anal. 196, 40-60 (2002) · Zbl 1027.47036
[26] Metafune, G., Prüss, J., Rhandi, A., Schnaubelt, R.: The domain of the Ornstein-Uhlenbeck operator on an Lp-space with invariant measure. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1, 471-485 (2002) · Zbl 1170.35375
[27] Okamoto, H.: A uniqueness theorem for the unbounded classical solution of the nonstationary Navier-Stokes equations in ?3. J. Math. Anal. Appl. 181, 191-218 (1994) · Zbl 0806.35140
[28] Okamoto, H.: Exact solutions of the Navier-Stokes equations via Leray?s scheme. Japan J. Indust. Appl. Math. 14, 169-197 (1997) · Zbl 1306.76016
[29] Sawada, O.: On time-local solvability of the Navier-Stokes equations in Besov spaces. Adv. Differential Equations 8, 385-412 (2003) · Zbl 1038.35059
[30] Sawada, O.: On analyticity rate estimates of the solutions to the Navier-Stokes equations in Bessel-potential spaces. Preprint, 2003 · Zbl 1083.35097
[31] Sawada, O.: The Navier-Stokes flow with linearly growing initial velocity in the whole space. Bol. Soc. Paran. Mat. (to appear) · Zbl 1091.35062
[32] Stein, E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, Princeton, 1993 · Zbl 0821.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.