zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Application of homotopy perturbation method to nonlinear wave equations. (English) Zbl 1072.35502
Summary: The homotopy perturbation method is applied to the search for traveling wave solutions of nonlinear wave equations. Some examples are given to illustrate the determination of the periodic solutions or the bifurcation curves of the nonlinear wave equations.

MSC:
35A25Other special methods (PDE)
35B10Periodic solutions of PDE
35B32Bifurcation (PDE)
WorldCat.org
Full Text: DOI
References:
[1] Deng, S. -F.: Bäcklund transformation and soliton solutions for KP equation. Chaos, solitons & fractals 25, No. 2, 475-480 (2005) · Zbl 1070.35059
[2] Tsigaridas, G.; Fragos, A.; Polyzos, I.; Fakis, M.: Evolution of near-soliton initial conditions in non-linear wave equations through their Bäcklund transforms. Chaos, solitons & fractals 23, No. 5, 1841-1854 (2005) · Zbl 1069.35066
[3] Pashaev, O.; Tanoğlu, G.: Vector shock soliton and the Hirota bilinear method. Chaos, solitons & fractals 26, No. 1, 95-105 (2005) · Zbl 1070.35056
[4] Vakhnenko, V. O.; Parkes, E. J.; Morrison, A. J.: A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos, solitons & fractals 17, No. 4, 683-692 (2003) · Zbl 1030.37047
[5] De-Sheng, L.; Feng, G.; Hong-Qing, Z.: Solving the (2+1)-dimensional higher order Broer-Kaup system via a transformation and tanh-function method. Chaos, solitons & fractals 20, No. 5, 1021-1025 (2004) · Zbl 1049.35157
[6] Zayed, E. M. E.; Zedan, H. A.; Gepreel, K. A.: Group analysis and modified extended tanh-function to find the invariant solutions and soliton solutions for nonlinear Euler equations. Int J nonlinear sci numer simul 5, No. 3, 221-234 (2004)
[7] Abdusalam, H. A.: On an improved complex tanh-function method. Int J nonlinear sci numer simul 6, No. 2, 99-106 (2005)
[8] Abassy, T. A.; El-Tawil, M. A.; Saleh, H. K.: The solution of KdV and mkdv equations using Adomian Padé approximation. Int J nonlinear sci numer simul 5, No. 4, 327-340 (2004)
[9] El-Sayed, S. M.: The decomposition method for studying the Klein-Gordon equation. Chaos, solitons & fractals 18, No. 5, 1025-1030 (2003) · Zbl 1068.35069
[10] Kaya, D.; El-Sayed, S. M.: An application of the decomposition method for the generalized KdV and RLW equations. Chaos, solitons & fractals 17, No. 5, 869-877 (2003) · Zbl 1030.35139
[11] Liu, H. M.: Generalized variational principles for ion acoustic plasma waves by he’s semi-inverse method. Chaos, solitons & fractals 23, No. 2, 573-576 (2005) · Zbl 1135.76597
[12] Liu, H. M.: Variational approach to nonlinear electrochemical system. Int J nonlinear sci numer simul 5, No. 1, 95-96 (2004)
[13] He, J. H.: Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos, solitons & fractals 19, No. 4, 847-851 (2004) · Zbl 1135.35303
[14] Mesón, A. M.; Vericat, F.: Variational analysis for the multifractal spectra of local entropies and Lyapunov exponents. Chaos, solitons & fractals 19, No. 5, 1031-1038 (2004) · Zbl 1107.37021
[15] He, J. H.: Variational iteration method: a kind of nonlinear analytical technique: some examples. Int J nonlinear mech 34, No. 4, 699-708 (1999) · Zbl 05137891
[16] Drăgănescu, Gh.-E.; Căpălnăşan, V.: Polycrystalline solids, nonlinear relaxation phenomena in polycrystalline solids. Int J nonlinear sci numer simul 4, No. 3, 219-226 (2004)
[17] He, J. H.: Modified Lindstedt-Poincarè methods for some strongly nonlinear oscillations. Part I: Expansion of a constant. Int J nonlinear mech 37, No. 2, 309-314 (2002) · Zbl 1116.34320
[18] He, J. H.: Modified Lindstedt-Poincarè methods for some strongly nonlinear oscillations. Part II: a new transformation. Int J nonlinear mech 37, No. 2, 315-320 (2002) · Zbl 1116.34321
[19] He, J. H.: Modified Lindstedt-Poincarè methods for some strongly nonlinear oscillations. Part III: Double series expansion. Int J nonlinear sci numer simul 2, No. 4, 317-320 (2001) · Zbl 1072.34507
[20] Liu, H. M.: Approximate period of nonlinear oscillators with discontinuities by modified Lindstedt-Poincarè method. Chaos, solitons & fractals 23, 577-579 (2005) · Zbl 1078.34509
[21] He, J. H.: Gongcheng yu kexue zhong de jinshi feixianxing feixi fangfa (in chinese)Asymptotic methods in engineering and sciences, or approximate analytical methods in engineering and sciences. (2002)
[22] He, J. H.: Determination of limit cycles for strongly nonlinear oscillators. Phys rev lett 90, No. 17, 174301 (2003)
[23] Shen, J.; Xu, W.: Bifurcations of smooth and non-smooth travelling wave solutions of the Degasperis-Procesi equation. Int J nonlinear sci numer simul 5, No. 4, 397-402 (2004)
[24] Ma, S.; Lu, Q.: Dynamical bifurcation for a predator-prey metapopulation model with delay. Int J nonlinear sci numer simul 6, No. 1, 13-18 (2005)
[25] Zhang, Y.; Xu, J.: Classification and computation of non-resonant double Hopf bifurcations and solutions in delayed van der Pol-Duffing system. Int J nonlinear sci numer simul 6, No. 1, 63-68 (2005)
[26] Zhang, Z.; Bi, Q.: Bifurcations of a generalized Camassa-Holm equation. Int J nonlinear sci numer simul 6, No. 1, 81-86 (2005)
[27] Zheng, Y.; Fu, Y.: Effect of damage on bifurcation and chaos of viscoelastic plates. Int J nonlinear sci numer simul 6, No. 1, 87-91 (2005)
[28] Nada, S. I.: The effect of folding on covering spaces, immersions and bifurcation for chaotic manifolds. Int J nonlinear sci numer simul 6, No. 2, 145-150 (2005)
[29] He, J. H.: Homotopy perturbation technique. Comp meth appl mech eng 178, 257-262 (1999) · Zbl 0956.70017
[30] He, J. H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int J nonlinear mech 35, 37-43 (2000) · Zbl 1068.74618
[31] He, J. H.: Homotopy perturbation method for bifurcation of nonlinear problems. Int J nonlinear sci numer simul 6, No. 2, 207-208 (2005)
[32] Yao, Y.: Abundant families of new traveling wave solutions for the coupled Drinfeld-Sokolov-Wilson equation. Chaos, solitons & fractals 24, 301-307 (2005) · Zbl 1062.35018
[33] El-Shahed, M.: Application of he’s homotopy perturbation method to Volterra’s integro-differential equation. Int J nonlinear sci numer simul 6, No. 2, 163-168 (2005)
[34] He, J. H.: Int J nonlinear sci numer simul. 4, No. 3, 313-314 (2003)
[35] Hao, T. H.: Int J nonlinear sci numer simul. 4, No. 3, 311-312 (2003)
[36] He, J. H.: Preliminary report on the energy balance for nonlinear oscillations. Mech res commun 29, No. 2-3, 107-111 (2002) · Zbl 1048.70011
[37] Fu, Z.; Liu, S.; Liu, S.: Multiple structures of 2-D nonlinear Rossby wave. Chaos, solitons & fractals 24, 383-390 (2005) · Zbl 1067.35071